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ABSTRACT 

The Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) test 

bed examines the problem of multiple spacecraft interacting at close proximity.  This 

thesis contributes to this on-going research by addressing the development of the 

software architecture for the AMPHIS spacecraft simulator robots and the 

implementation of a Light Detection and Ranging (LIDAR) unit to be used for state 

estimation and navigation of the prototype robot.  The software modules developed 

include: user input for simple user tasking; user output for data analysis and animation; 

external data links for sensors and actuators; and guidance, navigation and control 

(GNC).  The software was developed in the SIMULINK/MATLAB environment as a 

consistent library to serve as stand alone simulator, actual hardware control on the robot 

prototype, and any combination of the two.  In particular, the software enables hardware-

in-the-loop testing to be conducted for any portion of the system with reliable simulation 

of all other portions of the system.  The modularity of this solution facilitates fast proof-

of-concept validation for the GNC algorithms.  Two sample guidance and control 

algorithms were developed and are demonstrated here: a Direct Calculus of Variation 

method, and an artificial potential function guidance method. State estimation methods 

are discussed, including state estimation from hardware sensors, pose estimation 

strategies from various vision sensors, and the implementation of a LIDAR unit for state 

estimation.  Finally, the relative motion of the AMPHIS test bed is compared to the 

relative motion on orbit, including how to simulate the on-orbit behavior using Hill’s 

equations. 
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I. INTRODUCTION 

The motivation behind the Autonomous Multi-Agent Physically Interacting 

Spacecraft (AMPHIS) test bed is the autonomous interaction of multiple, fractionated 

spacecraft.  Many applications can be imagined for the ability of a spacecraft to interact 

with another spacecraft, including rendezvous for repair, refueling or replenishment, and 

salvage or rescue. The ability for multiple spacecraft to dock with one another is 

tremendously important because it would facilitate a new paradigm for putting satellites 

on orbit.  No longer would a single, costly rocket launch be needed for all missions; 

instead, some missions could be launched in multiple smaller vehicles as independent 

units.  Once on orbit, the units would autonomously maneuver and dock to form a single 

functioning satellite.    

The AMPHIS test bed provides a platform to implement and test many different 

concepts of operations.  Other applications can include multiple spacecrafts interacting 

with a non-cooperative target.  Since these spacecraft are possibly already on orbit, it is 

not possible to presuppose the existence of any tell-tail features on the spacecraft, such as 

a pattern of special light emitting diodes (LED), lasers, radio frequencies, etc. The 

Russians have operated such systems for years using similar techniques, and of course, 

these pre-positioned articles greatly simplify the problem (Ref. [19]). A vision based 

approach could be taken to generalize the problem. Using a vision based approach, only 

general shape and size characteristics of the surrounding objects must be known in order 

to calculate bearing, distance and orientation.  The AMPHIS test bed provides an 

excellent stage to develop solutions for these and other related problems. 

A.  BACKGROUND 

The topic of autonomous interacting spacecraft is gaining popularity as space 

launch remains high cost, and automated space systems could be economical and 

beneficial for certain commercial and military operations.  A few real-world projects of 

autononmy through the use artificial vision are given here for contextual background.  
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1. NASA’s Demonstration for Autonomous Rendezvous Technology 
(DART)  

The DART mission (FY05) was NASA’s first test of an autonomous rendezvous 

in space.  DART was supposed to demonstrate the technology needed to one day guide 

supplies to the ISS, service satellites on orbit, etc.  It was equipped with an Advanced 

Video Guidance Sensor (within 330 feet) and Global Positioning System (GPS) (outside 

of 330 feet).  Unfortunately, DART used more propellant than anticipated; when it tried 

to maneuver away, it struck the rendezvous satellite. (Ref. [19])  

2. DARPA’s Orbital Express 
Orbital Express (FY06) will demonstrate enabling technologies for autonomous 

rendezvous, capture, serving, and maintenance of on orbit satellites.  It will perform a 

series of captures and separations over various conditions.  Electric and fuel coupling 

between orbital express and the rendezvous satellite will be tested, along with an onboard 

robotic arm to autonomously transfer several items.  Visible and infrared artificial vision 

aids its autonomous capabilities.  (Ref. [20]) 

3. National Space Development Agency (NASDA) of Japan’s ETS-7 
The ETS-7 program consisted of a pair of satellites, a chase satellite and a target 

satellite, that successfully undocked and re-docked autonomously in July of 1998.  Also 

known as Kiku-7, the pair of interacting spacecraft performed multiple tests, including 

degraded equipment tests and several tele-robotic experiments that boosted Japan’s hopes 

for future unmanned space flights.  Scientists at NASDA claim that this experiment has 

proven the cost effectiveness of autonomous, interacting spacecraft. (Ref. [21])  

However, since the system was built and launched together before it was tested, there is 

some doubt the system could be as effective with other types of spacecraft. 

4. European Space Agency’s (ESA) Automated Transfer Vehicle (ATV) 

The ATV is a European developed spacecraft for providing the International 

Space Station with the automated transfer of supplies.  The first of its class, the Jules 

Verne successfully completed the autonomous rendezvous and docking system in 

Europe’s largest ship hull test facility in September, 2006 and plans to replicate that 

success in space in 2007.  Its primary mode of navigation comes from the use of 

independent supervision laser scanning device.  (Ref. [22]) 

 



3 

5. Air Force Research Laboratory’s (AFRL) XSS-10 
The XSS-10 micro-satellite ejected from a Delta 2 rocket in January, 2003, and 

then maneuvered itself back to the spent stage.  It repeated this sequence twice more 

before begin described as a success.  Its navigation relied in part on an onboard television 

camera.  The vision, propulsion and guidance and control software all performed well for 

the $100 million program.  Its success is a key element in the development of future 

autonomous spacecraft.  (Ref. [Error! Reference source not found.]) 

6. AFRL’s XSS-11 
The XSS-11 Demonstration Mission was launched in April of 2005.  Its purpose 

was to demonstrate robust, extended duration proximity operations.  It is a micro-satellite 

class vehicle that could autonomously rendezvous with multiple space objects using a 

scanning LIDAR for navigation.  It also has several guidance modes, such as forced-

motion trajectories, closed loop proximity operations, or collision avoidance that could be 

switched from ground control or autonomously.   (Ref. [24]) 

7. NASA’s Hubble Robotic Vehicle (HRV) 
NASA was developing a robotic vehicle to service the Hubble Space Telescope 

(HST) in FY08.  Its purpose was to lengthen the life of the HST by taking it new 

batteries, propellant inside of a de-orbit module, and an ejection module with robotic 

units.  The HRV would be paritially controlled from the ground to install new instuments, 

and reroute power using the new batteries.  The HRV project was recently cancelled due 

to budget constraints.  (Ref. [25]) 

8. Obital Recovery Group’s Orbital Life Extension Vehcile (CX-OLEV) 
CX-OLEV’s mission is to prolong the lives of telecommunications satellites.   

CX-OLEV will operate as space tug, carrying the propellant, and navigation to boost 

telecommunications satellites into the proper orbit, extending their life by approximately 

eight years.   It will dock with the rendezvous satellite’s apogee kick motor using 

artificial vision.  Over one hundred satellites have been identified that could benefit from 

CX-OLEV.  The first mission is scheduled in 2008.  (Ref. [26]) 

9. Naval Research Laboratory’s (NRL) Spacecraft for the Universal 
Modifications of Orbits (SUMO) 

The SUMO project at the NRL (currently being renamed to FREND) is being 

developed to be somewhat of a space “AAA truck.”  It is a satellite with a hefty fuel (∆V) 
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capacity and multiple robotic arms.  If a satellite becomes incapacitated due to 

malfunction, runs out of fuel, or just does not have the fuel needed to change to the 

desired orbit, the FREND craft will maneuver up the target craft and grab onto it with its 

robotic arms.  It will then use its own propulsion to move the target craft into the desired 

orbit.    The NRL also operates a six degree of freedom, on orbit simulator.  The 

simulator takes actuator input and manipulates the satellite with the appropriate dynamics 

in all six degrees of freedom, including the motion created by differing orbits. (Ref. [27]) 

10. AUDASS at SRL of Naval Postgraduate School (NPS) 
The Spacecraft Robotics Laboratory (SRL) at the Naval Postgraduate School 

supports the Graduate School of Engineering and Applied Science (GSEAS), the Space 

Systems Academic Group (SSAG), and conducts research for the Air Force Research Lab 

(AFRL) (Space Vehicle Directory), Defense Advanced Research Projects Agency 

(DARPA) (Tactical Technology Office), and various sponsoring agents.   The first 

interacting spacecraft simulator robot project conducted in the SRL at NPS was the 

Autonomous Docking and Servicing Spacecraft Simulator (AUDASS).  (Ref [1], [3], [4]) 

 

 
Figure 1. Autonomous Docking Testbed at the NPS SRL (Ref. [1]) 

 

This project first conducted an autonomous docking on the planar floor in the fall 

of 2005.  For reference, each robot had the same basic physical properties: mass of 63 kg, 
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moment of inertia about the vertical axis of 2.3 kg m2, maximum control torque about 

vertical axis of 0.16 Nm, and maximum thrust of 0.45 N per thruster.  The vision sensor 

used was a monocular camera which produces a two dimensional image that determined 

its relative position by focusing on three non-planar infrared lights positioned on the 

target robot.  (Refs. [1], [2], [3], [4]) 

Contrary to the laboratory simulator at the NRL, the simulator at SRL can only 

simulate three degrees of freedom, vice six.  But the differences between them create a 

completely complementary set of labs: the simulator at the NRL cannot test with the 

actual actuators in the loop.  Although the SRL can only test three degrees of freedom, 

every element, from sensor to actuator can be tested in the hardware loop. 

B. PROJECT GOALS AND LIMITATIONS 
Development of the AMPHIS project represents the realization of several 

overarching goals.  It provides a platform for graduate level academic learning as it is an 

unsolved, real-world problem requiring expertise in multiple disciplines.  As an 

engineering problem, it contains many foreseen and unforeseen challenges that require 

innovation and cooperation from a dedicated team of engineers.  Therefore, once 

developed, the AMPHIS test bed will serve as a platform for simulation, development, 

implementation, testing and evaluation for different sensors, actuators, artificial visions, 

and guidance, navigation and control algorithms to validate and perfect a solution for the 

multiple interacting spacecraft problem. 

The AMPHIS project has several key limitations in scope:   

1) The spacecraft simulator robots have only three degrees of freedom (3 

DOF): translation on a flat, level plane, and yaw – the rotation about the 

vertical axis.  Implementing a hardware system that simulates a gravity 

free, frictionless environment for a “free floating” robot with pitch, roll, 

and yaw is beyond scope of the project.   However, a multiple spacecraft, 

six degree of freedom (6 DOF) computer simulation with multiple 

perturbations can be used to simulate the full problem (Ref. [5], [6], [8]).  

Also, the applicability of a 6 DOF system using a 3 DOF simulator is 

discussed in Section IV. 
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2) The part selection is also limited, in general, to commercial off the shelf 

(COTS) items; the only fully contracted part is the specially made, 

frictionless floor which is flat to a high degree of accuracy.  The 

limitations on parts sometimes require inefficient, inelegant work-a-

rounds; at the same time, they also present unforeseen opportunities to 

innovate and engineer solutions to difficult challenges.  These problems 

include: portable processing speed and capacity limitations; hardware 

device communication and synchronization, and sensor translation and 

integration.  These limitations will be clarified further in the next section.       

C. EXPERIMENTAL SETUP 
The major components of the AMPHIS project are the Proximity Operation 

Simulator Facility (POSF), and the spacecraft simulator robots.  The POSF consists of a 

special flat floor that measures 4.9 m by 4.3 m.  Its surface is made of Epoxy material. 

When used in conjunction with the air pads, the floor is essentially frictionless and 

horizontal to a high degree of accuracy (residual gravity ~10-3 g) (Refs. [1], [3], [4], [5]).  

The spacecraft simulator robots float via air pads over the floor. Each robot has 

three degrees of freedom, two for the translation and one for the rotation about vertical 

axis.  Although one of the goals of the AMPHIS project is to test different sensors, 

actuators, and equipment, each robot must have certain elements to function correctly, 

including:  

• Air pads, to reduce the friction of the POSF  

• Thrusters, to provide translational movement on the planar floor and rotation 

• Compresses air system, to operate the air pads and thrusters 

• Reaction wheels, or control moment gyros (CMG), for attitude control 

• Gyros, to sense changes in attitude 

• Accelerometers, to sense translational movement 

• On board computers, to calculate and control the hardware devices 

• Wireless adapters, to communicate with other robots 
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• Indoor GPS, to sense an absolute position in the room 

• Line counters, to determine movement on the POSF by counting lines on the 

POSF (not yet developed at SRL) 

• Laser mice, to determine movement on the POSF by sensing movement of the 

mouse (not yet developed at SRL) 

• Artificial vision, to determine the positions of other robots and obstacles on the 

POSF 

• Docking mechanism, to dock with other robots 

• Battery and power distribution system, for powering all electric devices onboard  

Furthermore, the AMPHIS project expands testing past docking, so three spacecraft 

robots will be constructed once the first prototype has been developed.   

Although the AMPHIS test bed will have the ability to test multiple design 

concepts, a base concept was decided on for initial implementation.  This base concept 

consists of the following equipment on each robot: 

• 2 Batteries and power distribution system  

• 4 Air pads 

• 4 tank compressed air system 

• 2 thrusters (front and aft) that rotate ±180˚ 

• 2 micro CMGs 
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Figure 2. Base concept configuration (Ref. [5]) 

 

• Indoor GPS receiver 

• 1 Gyro 

• 2 Accelerometers 

• 2 onboard PC104 computers 

o One running xPC Target in real time for guidance, navigation and 

control 

o One running Windows XP for GPS and LIDAR processing 

• 1 Wireless adapters 

• 1 Ethernet router for connectivity 

• 1 Sick LIDAR OEM 

LIDAR

iGPS sensor

3000 psi
Air Cylinders

4 Air Pads

3 Li Ion
Batteries

Router

Dual PC104

Dual 
MSGCMG

Dual
Vectorable
Thrusters
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Figure 2 is a photograph of the prototype simulator robot in this configuration, and an 

illustration of the concept of operations is depicted in Figure 3.    

Master Computer/NetworkMaster Computer/Network

Dual PC104Dual PC104

Wireless NetworkWireless Network

Pseudo-GPSPseudo-GPS

GPS ReceiverGPS Receiver

 
Figure 3. Experimental Setup 

 

Each robot will be equipped with the Indoor Global Positioning System (GPS) 

and a mono-vision camera. The Indoor GPS system acts similarly to GPS within the 

laboratory and is composed of two stationary emitters and one receiver on each robot. 

These units are calibrated so the sensor on each robot can determine its position on the 

floor to within a few millimeters. The LIDAR mounted on the prototype unit is used to 

find the positions of the other robots relative to it. Details of the SICK OEM LIDAR are 

presented in the Section III. Communications between robots via a wireless network will 

be integrated into the system. The onboard computers handle image processing for state 

estimation, compute control profiles, command thrust and torque actuators and are linked 

to a wireless network for data exchange among the robots. The wireless network enables  
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multiple cooperation paradigms.  The hardware construction of these robots has been 

detailed in References [1], [3], [4], [5], [6], and [7]. A detailed test bed schematic is 

displayed in Figure 4.   

 
Figure 4. AMPHIS Test Bed Schematic (Refs. [5], [6]) 

  
Hardware limitations to this point have prevented a fully functioning proto-type.  

The only way to use the Indoor GPS system in real time is by using the manufacturer’s 

program, called Work Space, which must run on Windows XP.  The Work Space 

protocol cannot yet run in MATLAB, but only in LINUX.  Therefore, the information 

flow must go from the GPS transmitters to the GPS receiver, to the Work Space program 

on the onboard Windows XP PC104, to an off board LINUX computer via the wireless 

TCP/IP Local Area Network (LAN) for processing, back to the PC104 computer via 

TCP/IP LAN, and then finally to the xPC Target PC104 via UDP.  The processed 

information cannot be sent directly to the xPC Target computer because xPC target 

computer is not compatible with any wireless adapter.   Not only have these hardware 

limitations created en inefficient implementation of the design concept, but the PC104 

processor has not been able to handle the workload: Windows XP, Work Space, and 

MATLAB/SIMULINK cannot all run concurrently and flawlessly. 
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II. SOFTWARE DESIGN 

Requirements for the AMPHIS software design were based much upon the 

concept that a single program could be used in multiple places in various ways without 

having to be completely re-engineered to function.  For example, the code needed to 

function as a stand alone simulator, yet it also had to compile into xPC Target code to 

function as the guidance, navigation and control program on the spacecraft simulator 

robot.  It needed to function for one, two, or three robot scenarios.  It also needed to be 

installed on multiple robots without the need for a lot of customization.  Fulfilling these 

requirements simultaneously make the design much more difficult than intuition says it 

should be.  The section will explain how some of these design challenges were met. 

A. USES OF THE SIMULINK/MATLAB SOFTWARE 
There are two computers in the base design of the AMPHIS spacecraft simulator 

robots.  As previously mentioned, one computer will run Windows XP for wireless 

device transmissions and for LIDAR processing.  The SIMULINK model for the 

Windows computer will be held to the end of the section.  First, the software for the 

guidance, navigation, and control xPC Target machine will be discussed.   

The first principle concepts in the software architecture that facilitates meeting all 

of the aforementioned requirements is that the software is designed around the 

functioning of a single robot which can “sense” the other robots.  This approach differs 

from a design that treats all robots as equals, as a simple simulator would do. As the 

primary robot, or the robot of focus, the software has guidance, navigation and control 

only for itself; the state (position and velocity) of the other two robots is simulated from a 

user defined profile, sensed with artificial vision, communicated via the wireless LAN, or 

calculated from a combination of several inputs.     

Since a single code is needed to be deployed on multiple robots, and then 

communicate together, a naming scheme is needed to prevent conflicts between 

functioning robots.  For example, if each physical robot was named Robot 1, Robot 2, 

and Robot 3 (denoted as uppercase “Robot”), it is desired to employ the single software 

code on each robot without having to rename all of the internal variable names (denoted 
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as lowercase “robot”) to coincide with the global naming convention.  For this reason, a 

relative-naming convention was contrived to limit the reconfiguration to the setting of a 

single variable, referred to as simply the identification (id#).  Since the single code is 

focused on the robot to control, the relative name for this robot is Robot 1.  In other 

words, robot 1 refers to all things having to do with the controlled robot, and the other 

Robots are referred by as robot 2 and robot 3.  Since this the naming convention could 

become confusing, this translation matrix is displayed on the top level of the SIMULINK 

model: 

 

Id# / internal name robot 1 robot 2 robot 3 
Id#1 Robot 1 Robot 2 Robot 3 
Id#2 Robot 2 Robot 1 Robot 3 
Id#3 Robot 3 Robot 2 Robot 1 

Table 1. Relative to global naming translation  
 

This matrix is interpreted as such: the numbers in the matrix indicate the global 

names, or hardware names of the robots.  They could be interchanged from 1, 2, 3, to A, 

B, C; Blue, Red, Green; Huey, Dewey, and Louie; etc.  Since each robot is assigned a 

different identification number, it is used in conjunction with the interpretation matrix the 

match relative names with global names.  The id# determines which row the software 

will index the naming scheme.  Then, indexing the columns using the relative, internal 

names (lowercase “robot” tags used in the universal software) will give the global name 

of a particular robot.  For example, for id#1 (the software running on Robot 2), the 

internal name “robot 2” refers to Robot 1, and “robot 3” refers to Robot 3.  Similarly, for 

id#3 (the software running on Robot 3), the internal name “robot 2” refers to Robot 2, 

and “robot 3” refers to Robot 1.  With this naming convention, the internal name “robot 

1” will always refer to its own global name.  Note also that Robot 1 and Robot 3 both 

refer to robot 2 as Robot 2.  This naming convention allows for the portability of the 

single control code to any three robots.  By setting the id# uniquely, the data will be 

indexed correctly for that particular robot. 

One key concept for the architecture design of the software design is the 

simulator/control software duality.  To be truly useful for hardware in-the-loop testing, 
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the design needed to not only function as either a simulator or a control platform, but also 

as a hybrid, controlling some things and simulating others.  Simple manual switches were 

placed in key areas to facilitate user ease of selecting what needs to be simulated and 

what needs to work as a controller or sensor.  These key areas are: 

• The state of robot 1 

o Onboard sensors of robot 1 

o The plant model (state integrator) 

o Simulated from user defined trajectory lookup tables 

• The state of robots 2 and 3 

o Onboard sensors of each robot (via UDP)  

o Simulated from trajectory lookup tables (user defined) 

o Vision sensors (LIDAR) 

o Simulated vision sensors (simulated from the trajectory lookup 

tables) 

Depending on the set of sensors used, it may be desired to use a combination of several 

sensors, rather than just one.  A Kalman filter can provide real time updates even though 

updated from the vision sensors will happen at discrete intervals in non-real time. 

 The system described above can facilitate many simple configuration changes for 

different testing scenarios.  This key concept is an important factor when trying to 

develop one or more of the modules in Figure 5.  Each of these blocks can be operated in 

simulation mode, or control mode. 

 



14 

Simulink Model

Guidance Model

Pose Estimation

Load Parameters

State Estimation

Robot Control Model

Artificial Vision Model

Onboard Autonomy

 
 

Figure 5. xPC Target Software hierarchy (Ref. [17]) 

 

Since the state of any robots is easily simulated with user defined trajectories using 

lookup tables, robots can be tested one at a time.  By simulating the other one or two 

robots, the robot of focus can be developed, testing the guidance, navigation and control 

blocks.  To more accurately model the artificial vision sensor, parameters on the pose 

estimation simulator can be configured to match realistic update rates and accuracies.  

Another point key to the successful implementation of the control/simulator 

software is in the ability to conduct hardware in-the-loop testing.  Regardless of which 

modules are being simulated, they can all be compiled and run in xPC Target.  This way, 

the control actuators can be tested without the robot actually having to move.  As the 

coordinates and attitudes of all the robots can be simulated, the actuator control and 

feedback signals can be viewed and examined to the state trajectories given to it.    

B. PROGRAMMING PRACTICES AND RULES USED IN THE SOFTWARE 
DESIGN 
Several programming practices had to be employed to ensure several 

requirements could be met.  First, the software had to compile and run on xPC Target.  

Second, the architecture had to enable blocks from multiple designers to be integrated 

seamlessly into the master software.  Third, the architecture had to support multiple 

guidance, navigation and control schemas.  For example, a trajectory planner guidance 

system works significantly different than an artificial potential function guidance system.  

The architecture is desired to be flexible enough to have the major modules designed and  
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developed without having to redesign other modules.   Finally, the architecture had to 

support growth: new and different equipment will need to eventually be incorporated into 

the design. 

Several basic, good programming practices had to be followed to ensure the 

aforementioned requirements could be met.    These practices are listed and explained 

here.  

• Modularize the design.  A modular design is instrumental in the 

facilitation of the fulfillment the above requirements.  Since there are 

many ways to implement solutions to any given problem, and multiple 

ways to define the division of labor of subsystems, a clear definition of the 

purpose, functionality, and interface of each module must be made to 

ensure development from different designers share the same vision of the 

overall architecture.   These explanations follow in the next several 

sections of this paper.      

• Standardize the interface between modules. The interface between 

modules, such as the format, size, name, and context of the inputs and 

outputs of every module, must be defined to facilitate integration of 

different modules from different designers.  Again, these explanations 

follow in the next several sections of this paper.  

• Avoid global tags.  Global tags are often used to prevent “spaghetti” code 

when sending signals from a subsystem to one or more different 

subsystems in SIMULINK models with “From” and “Goto” blocks. But 

there are problems with global tags: global tags take more processor time 

as seen when analyzing a system with the optional SIMULINK Optimizer.  

(Ref. [7]) Global tags also can lead to confusing models; all of the inputs 

and outputs can not be seen from the top level system making the 

requirements of the system function misleading.  Instead of using global 

tags, the consist use of local tags with buses alleviate all of the above 

issues. 
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• Use bus creators and bus selectors where applicable.  A bus is a wonder 

tool compared to the standard “MUX” and “DEMUX” blocks for many 

applications.  When needing to send many disparate signals from one 

subsystem to others, a bus selector can incorporate many different signals 

onto one line.  Furthermore, each line can be named for easy identification 

on the bus.  When using the bus selector, it is only necessary to select the 

outputs needed for each subsystem; on the contrary, use of the MUX and 

DEMUX blocks require the entire line to be broken apart in every 

subsystem it is utilized.  This feature allows the sizing requirements for 

signals to be kept consistent much easier to with buses; therefore buses 

facilitate seamless integration of modules from multiple designers.  As 

equipment is added, removed, or changed, the data routed to the bus 

creator can easily be altered to accommodate the new signals without 

affecting the bus selectors on the other end; only the subsystems that use 

the new data will need to be changed accordingly. Buses have also shown 

to take less processing time compared to MUXes from the SIMULINK 

Optimizer. (Ref. [7]) 

• Avoid global variables. Similar to global tags, global variables can cause 

naming problems.  Besides the burden of ensuring a global variable is 

correctly declared as such within every scope it is used, it becomes 

difficult to track many different global variables when debugging, and 

naming problems could cause conflict when one designer uses a global 

variable name, and then their code is integrated with code in which 

another designer used the same name for local variables.  Also, embedded 

MATLAB functions do not allow the declaring of global variables.  One 

important exception is found in the SIMULINK code for the Windows 

computer.  Since objects cannot be passed in SIMULINK, the variable 

which contains the serial port information for the LIDAR connection must 

be declared as global. 
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• Avoid enabled subsystems.  Enables subsystems are subsystems that 

operate only with they are enabled by some input parameter. Enabled 

subsystems cannot contain rate transition blocks (nor can they contain 

global tags, but those are avoided as well).  As the AMPHIS project 

develops, some hardware may need these rate transition blocks to function 

correctly.  If rate transition blocks are required in an enabled subsystem, a 

re-design would be necessary to incorporate both features.  The work 

around for this conflict is not simple and case dependent.   

• Avoid MATLAB Function blocks.  MATLAB Function blocks are not 

fully compatible with xPC Target, and therefore cannot be used on the 

xPC Target machine.  In the non-real time Windows computer, however, 

one is used for LIDAR control until the design can be ported over to xPC 

Target.  Where applicable, Embedded MATLAB Function blocks are a 

better substitute and are used.    

• Use a standardized naming convention.  Using standardized names are less 

of a problem when almost all variables are locally defined.  Only the 

naming interface between modules needs to be standardized.  Primary 

name standards are as follows: 

o state: refers to the system state; for the base configuration, these 

variables are the coordinates and attitude (xi, yi, θi), and the time 

rate of change of xi, yi, θi for i = 1 to 3 robots. 

o state 1, or st1: refers to the state of robot 1, or the robot on which 

the software is running. 

o dead reckoning, or dr: the state as calculated only by the plant 

propagator. 

o ref, or user: the user defined reference signal, containing the 

desired end state 

o gcmd: guidance commands for the guidance module 

o vcmd: vision commands for the vision sensor 
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o act: signals for the actuators  

o act_fb: actuator feedback signals 

o xlink: the crosslink between robots, for incoming and outgoing 

messages 

o input_bus: all of the information from external connections needed 

for state estimation  

o u1: a structure containing all control related variables for robot 1 to 

be saved for animation and analysis 

o v1: a structure containing all vision related variables for robot 1 to 

be saved for animation and analysis 

C. USER INPUT 
The only input that is desired to get from the user is the end state, or end position 

of each of the robots.  An initial state must also be specified, but in the case of state 

determination from onboard sensors, it is desirable for each robot to determine the initial 

state autonomously.  Of course, a simulation will always require a specified initial state. 

The desired end position can be expressed in two different ways: absolute and relative. 

Every maneuver considered here will be a rest to rest maneuver, so the discussion of 

initial and final rates will be limited to say that they are all zero.   

An absolute end state is the simplest and most forward way to express the desired 

outcome of the maneuver.  This method is simply defining the final coordinates and 

attitude for each robot.  For example, an absolute end state could be: 

 

   Xf  Yf  Өf (attitude) 

Robot 1:  2.0 m  3.0 m  10° 

Robot 2:  1.5 m  2.0 m  95° 

Robot 3:  4.0 m  3.5 m  190°  

Table 2. Sample absolute end state 
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Note that the user is not inputting how to arrive at the end state; the onboard guidance, 

navigation and control systems will have to successfully maneuver each robot, with 

collision, to the final desired positions. 

Since a large part of the AMPHIS project deals with relative motion, the other 

way to define the final end state is in relative coordinate.  This can be accomplished by 

defining six variables (per robot) that describe a desired end state: a relative bearing to 

each robot, a range to each robot, and an angle that defines the orientation of each robot 

on its relative bearing. Note that there is no absolute information defined here.  The 

system must find absolute values itself for the described system.  For example, Figure 6 

is a sample desired end state and the corresponding matrix from Robot 1 (blue).  Again, 

the final desired rates are always zero. 
 

O12

R12

R13 B13

O13

B12
Robot 1

Robot 2

Robot 3

O13B13R13To Robot 3 (green)

O12B12R12To Robot 2 (red)

OrientationBearingRangeFrom Robot 1 (blue)

O13B13R13To Robot 3 (green)

O12B12R12To Robot 2 (red)

OrientationBearingRangeFrom Robot 1 (blue)

 
Figure 6. Relative parameters defining three-robot formation 

 

Each robot must have a similar set of relative values that define the equivalent 

formation: the numbers that describe the final position relative to Robot 1 will be 

different for Robot 2 and Robot 3; however, they will all be related.  For ease of user 

input, there is an automatic translation for relative final end states.  This translator is the 

simplest of the three major modules on the top level of the SIMULINK model (upper left 

module in Figure 7).  Once the matrix in Figure 6 is created from the perspective of 

Robot 1, the translator will put the matrix in a format from the perspective of the robot’s 

identification number.  This geometrical transformation is included in the Appendix. 
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Figure 7. Top level of the xPC Target SIMULINK model 

 

D. USER OUTPUT 
There are three major categories of data that is desired to be output to the user for 

analysis and animation.  These are: state data, control data, and vision sensor data.  To 

prevent a convoluted workspace, an output structure variable is used via a simout block 

for each of these categories, named “state”, “u”, and “v” respectively.  All values needing 

analysis are saved in one of these three variables.  For xPC Target, the out block is used 

at the top level of the model alternatively, because xPC Target does not support the 

simout block.  (Ref. [6])  With the amount of moving parts in the system, it is imperative 

to enable animation of the simulations to be able to have an accurate sense of what is 

happening.  Specifically, it is necessary to follow the movements of each robot and 

relevant moving parts, such as vectored thrusters, throughout the maneuver.   Figure 8 

displays a single frame of a simulation using three robots in the base configuration. 
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Figure 8. A single frame from the Bird’s eye view animation  

 

Note the dual fore and aft vectored thrusters are shown with their relative pointing 

direction on the blue (lower right) robot, and also their amount of thrust produced at a 

given instant indicated by the plume coming out of it.  Successive frames plotted in this 

manner facilitate a clear understanding of the strengths and weaknesses of control 

scheme. 

Figure 9 illustrates another perspective of animation developed for a slightly 

different configuration (see the section on “Direct Calculus of Variation Method” for a 

full description of the configuration). In this configuration, there is a single camera on 

each robot that has the capability to slew 360°.  A view from any of the three cameras can 

be simulated at and animated as illustrated. On the left Figure 9, a bird’s eye view of the 

floor is shown highlighting the field of view from the blue (lower left) robot’s camera. 

The right side of Figure 9 depicts what is seen in that field of view from the camera 

perspective.  
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Figure 9. (Left) Bird’s eye view showing the field of view, and (Right) the 

corresponding simulated photograph from the camera on the lower left robot  

 

An animation script can automatically be called upon the completion of the 

simulation.  This script is customized to animate the devices for a particular configuration 

and uses the three structure variables: state, u, and v.  This animation code is included in 

the appendix. 

E. EXTERNAL CONNECTIONS AND DATA LINKS 
The External Connections and Data Links module is located in the lower left in 

Figure 7.  The purpose of this module is to have all external connections collocated to 

facilitate easy reconfiguration and debugging of external devices.  The three categories of 

connections are the Wireless LAN, Onboard Sensors, and Actuator Feedback.  The 

External Connections SIMULINK module is shown in Figure 10.    
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Figure 10. External Connections SIMULINK module 

 

1. Onboard Sensors 
All onboard sensors and actuators are connected via RS-232 serial cables, as most 

devices are commonly available with RS-232 connectors, and more importantly, xPC 

Target has ready made blocks to interact with RS-232 devices.  The ports associated with 

these connections are commonly known as COM1, COM2, COM3, and COM4.  In the 

base configuration described in a previous section, the onboard sensors that are directly 

interfaced through xPC Target are the gyro, and the accelerometers.  Indoor GPS and 

vision sensors are interfaced indirectly through the onboard Windows XP computer, as 

explained in the following section.  All of the data collected from the onboard sensors can 

be used to help with state estimation.  Figure 11 displays the blocks used for the onboard 

sensors. 
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Figure 11. Onboard sensor RS-232 connections in SIMULINK 

Refer to References [5], [6] and [7] for full discussion on sensors. 

Exte rnal Conne ctions

3
xl ink_in

2
act_fb

1
input_bus

state

x link_out

v cm d

xlink_in

udp_bus

UDP windows com puter

sens_bus

Onboard Sensors

ACT act_f b

Actuator

4
xl ink_out

3
vcm d

2
act

1
state

sens_bus

udp_bus



24 

2. Actuators 
The Actuator module collocates all of the actuator connections in one module.  In 

the base configuration described in a previous section, the actuators that are directly 

interfaced through xPC Target are the micro CMGs and the thrusters.   Actuator feedback 

is a collection of signals returned from the actuators that are used to ensure that the 

actuators are reacting properly to the given control signal.  For example, the actual 

positions of the thrusters and CMGs are part of the actuator feedback.  The Control 

algorithm will use this information by comparing it to commanded positions of the 

actuators.  Refer to References [5], [6] and [7] for full discussion on actuators. 

Actuator feedback interface is similar to the onboard sensor interface.  Both are 

connected via serial ports and are interfaced directly with xPC Target. The major 

difference between the two is where the data is sent and how it is used: the onboard 

sensor data is sent to the Navigation module for state estimation, while the actuator 

feedback is used only in the Control module.  Figure 10 illustrates how the actuator 

inputs and outputs are held separate from the other external connections. 

3. Wireless Local Area Network (via the Windows XP Computer) 
The Wireless Local Area Network (LAN) is for communication between robots.  

In a cooperative robot scenario, it is useful to have information sent between robots.  

State information passed between robots provides a very robust sensory network, 

especially when compared to onboard vision sensors.  Other things, such as guidance 

modes and status messages are also useful to pass for coordination and synchronization 

between cooperating robots.  In Figure 10, these messages are indicated by the “xlink_in” 

and “xlink_out” tags.  The xlink messages are generated and utilized by the Navigation 

Module.  Refer to the Navigation chapter for a more detail explanation on this topic. 

A signal for artificial vision sensor control is also provided in the external 

connections module (indicated as “vcmd” in Figure 10).  The Windows XP computer 

provides artificial vision sensor control as described in the next section; it therefore needs 

to have a communication link from the Navigation module that controls vision 

commands.  In the case of a LIDAR, these commands are simply to activate or stop  
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LIDAR sensing and processing.  A different sensor, however, may require more 

complicated control signals.  A rotating camera, for example, may require interactive 

pointing commands.  

Communication between the xPC Target and Windows XP computer is 

accomplished using User Datagram Protocol (UDP).  Blocks for sending and receiving 

data using this protocol are predefined in xPC Target.  The only parameters required to 

setup these blocks are: 

1) IP address 

2) Port number 

3) Maximum data packet size 

Figure 12 displays the UDP send and receive blocks for communication with the 

Windows XP computer.  The entire IP address and port number configuration table is 

displayed in Table 3.  The connections to the off board LINUX are discussed in the 

following section.  

 

IP Address (192.168.) Port Numbers

Device Robot1 Robot2 Robot3 Shore FROM
Win1 Win2 Win3 xPC1 xPC2 xPC3 Linux

ETHERNET (.1.) TO Win1 5021 5031 4001 5000
Router 111 211 311 Win2 5012 5032 4001 5000
Windows 112 212 312 Win3 5013 5023 4001 5000
xPC 113 213 313 xPC1 4002

xPC2 4002
WIRELESS (.2.) xPC3 4002
SSID heweynet leweynet deweynet amphisnet Linux GPS GPS GPS
Router 111 211 311 1
Windows / Linux 112 212 312 10  

Table 3. IP address and port number configuration 
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Figure 12. UDP send and receive blocks for communication with the Windows 

XP computer 
 

The bus creator in Figure 10 collects all of the date for state estimation from the 

Windows XP computer and from the onboard sensors, and routs it to the Navigation 

block.  Refer to the Navigation chapter for an explanation how this data is used. 

F. GUIDANCE, NAVIGATION AND CONTROL 
The SIMULINK guidance, navigation and control (GNC) module is the code that 

takes the system from its initial conditions and then, based on sensor input, manipulates 

the actuators in a way to move the system to the desired final state.  It is seen on the right 
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of Figure 7.  The basic interaction between the three parts: guidance, navigation and 

control, follows.  The navigation module provides two functions.  First, it uses sensor 

information to determine the system state.  It then uses that information to manage how 

the guidance system will operate.  For example, if the robots are separated by a large 

distance, each robot may use a different guidance mode than if they were closely 

separated and ready to dock.  The guidance module will then take into account the current 

system state and the final desired system state and task the control system to move in the 

manner decided.  The control module then takes its task and feedback from the actuators 

to calculate the control inputs for the actuators.  As the actuators move the robot, and 

therefore change the system state, the navigation updates its estimation for the state, and 

the cycle continues.  Each module will now be discussed in more detail.  It is important to 

state that this discussion is based largely on the base configuration previously described; 

moreover, the behavior of these modules will depend on how the designer implements 

them.  There is no single correct answer, and therefore, there is no standard way each of 

these modules will interact.  This discussion will therefore remain general, and then two 

specific examples will follow in the next section.  Also, the following chapter focuses 

solely on Navigation, so that discussion will be deferred until then. Figure 13 is the GNC 

SIMULINK model. 

 

 
Figure 13. GNC SIMULINK model 
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The current system state estimation, the user’s final desired state, and a command 

from the onboard autonomy module are input to the guidance module so it may manage 

the guidance mode, or the manner in how the guidance system behaves.  In general, the 

system state consists of the coordinates of each robot, the attitude of each robot, and the 

rates at which each of those are changing.  Other algorithms may use other parameters as 

part of the state, such as accelerations, or the positions of control devices.  Obviously, 

these types of changes will require adjustments to several areas of the system.     

The guidance module has to work towards the timely movement of the robots to 

the desired end state while also avoiding collision with other robots and the floor barriers.  

Two basic methods are here proposed.  First, the guidance module can act as a trajectory 

planner: it will take into account the current and desired states, and then calculate all the 

control inputs to be applied over time to move the system to the desired end state.  

Second, the guidance module could consider the current and desired states, and then 

calculate a task for the controller that is valid for only that instant.  Both methods have 

their advantages and disadvantages; the designer must evaluate the following trade space 

to determine which type of guidance mode to develop.   

Simplicity and computation considerations: Although not necessarily true in every 

case, trajectory planning guidance systems tend to be much more complicated and 

computation intensive, while instantaneous tasking systems tend to have very light 

computation requirements.  This fact is rather intuitive considering that trajectory 

planning algorithms have to calculate many points along a path over time vice a single 

point in time.   Even if a complete trajectory can be calculated in a matter of seconds, it 

can prevent real-time trajectory updates.  Instantaneous tasking algorithms, conversely, 

only use current information to quickly determine what needs to be accomplished at that 

particular instant, and can therefore be useful on real-time systems.   

Deterministic and optimality considerations: There is no comparison between 

trajectory planning algorithms and instantaneous tasking algorithms when considering 

optimality.  Trajectory planning systems can calculate and (attempt to) minimize cost 

functions, giving at the very least a performance index relative to other trajectories.  

Instantaneous tasking algorithms do not take into account the entire path, and therefore 
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cannot predict the cost to complete it.  In the space environment, using non-optimized 

algorithms with limited fuel is not recommended, however they provide something to 

compare against in the AMPHIS lab, and can work with slower processors. 

One example of each type of guidance mode is provided in later sections: the 

Direct Calculus of Variation method is a trajectory planning algorithm and the Artificial 

Potential Function method is an instantaneous tasking algorithm.  Many other guidance 

and control algorithms could be developed.  For example, some programs can provide 

theoretical optimal solutions to similar problems and could be used to find a performance 

benchmark. (Ref. [18]) 

Finally, the control module takes the current state, the task given to it by the 

guidance system, and feedback provided by the actuators to determine the control inputs 

to the actuators.  A popular controller used in the base configuration is the PID controller.  

The control module must also provide other functions.  Once the PID controller has 

determined the necessary accelerations needed from the system dynamics, a control 

mapping must decide how all the available control devices will contribute to the control 

effort.  Each of these signals must then be translated into actuator commands.  An 

integrator, or system plant is also required to model the kinematics of the system; this is 

required for simulation, but can is as a dead reckoning solution for state estimation.  

Reference [6] contains an in depth discussion on AMPHIS control.  

G. WINDOWS XP COMPUTER SOFTWARE DESIGN 
The Windows XP computer has two basic functions: first it acts as a conduit for 

Wireless LAN communications.  This intermediate platform is necessary because there 

are no wireless adapters available for the xPC Target computer.  Therefore, all incoming 

and outgoing communications must be accomplished with the Windows XP computer, 

and relayed to/from the xPC Target computer.  The second function of the Windows XP 

computer is to provide artificial vision processing and control.  These functions are 

accomplished here for two reasons: 1) to help distribute the computational load across 

processors; and 2) because the MATLAB functions that control the LIDAR are not 

compatible with xPC Target.    
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The resulting software architecture on the Windows XP computer is relatively 

simple compared to the xPC Target computer.  One module handles all of the LIDAR 

control and processing, while the second acts an External Connection module similar to 

the one on the xPC Target computer.  Operation of the LIDAR is discussed fully in the 

Navigation Chapter.  Figure 14 is the top level architecture of the Windows XP computer.  

The code that controls the LIDAR is included in the Appendix. 
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Figure 14. Top level architecture of the Windows XP computer 

 

It is important to restate here another important function the Windows computer may 

provide.  The Indoor GPS system requires a proprietary program named “Work Space” to 

interpret the signals received by the onboard iGPS receiver.  This program runs only on 

Windows; therefore, either the onboard Windows computer can connect directly to the 

iGPS receiver with a serial cable, or, if a wireless serial relay is available, Work Space 

can run on an off board Windows computer and communicate with the iGPS receiver via 

a wireless serial link. 

A major complication with the Work Space program is that its protocol has only 

been developed in C++ (on a LINUX computer).  In order to obtain real time information 

from the Work Space program, the LINUX computer queries the Work Space program 

via the TCP/IP protocols, processes the information, and then relays the relevant data to 

the xPC Target machine via the Windows XP computer on the Wireless LAN.   
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It is also highly desirable to avoid running the Work Space program on the 

onboard computer.  It does not run well concurrently with SIMULINK; in order for the 

Work Space program answer queries from the off board LINUX computer in real time, it 

must be run as “Above Normal” priority.  Setting the Work Space task to this priority 

creates an unstable environment which induces the entire Windows computer to freeze or 

crash unpredictably.  Unfortunately, there is no support for the Indoor GPS system, as the 

company has changed ownership.  There are, however, promises that a new format will 

correct all of these problems in the summer of 2007.      
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III. GUIDANCE AND CONTROL EXAMPLES 

A. DIRECT CALCULUS OF VARIATION METHOD 
One example of a fully developed simulation model was completed using the 

Direct Calculus of Variation method.  In this method, the three position variables for each 

robot were approximated to vary as high order polynomials.  Using polynomials, 

velocity, acceleration, and jerk can be found through simple theoretical differentiation.  

The inverse dynamics then directly indicate the control profiles necessary for to achieve 

the desired position trajectories.  Using MATLAB’s fminsearch function, the family of 

polynomials can then be searched for pseudo-optimal results.  (Ref. [14], [15], [16]) 

The following discussion explains the solution to a rest to rest maneuver in detail.  

Some of the notation is slightly different than the notation used in other sections of this 

paper to be consistent with Reference [17].  The configuration in this simulation differs 

from the base configuration mentioned earlier.  The major differences are:  

1) The thruster type: instead of using dual fore/aft thrusters, a single free-

rotating variable vectored thruster is modeled.  It is assumed to always 

create thrust through the robot’s center of mass.   

2) The artificial vision sensor: a digital camera which takes two dimensional 

images and a vision processing computer is responsible for determining 

were the other robots are relative to the robot on which the camera is 

mounted. A camera control algorithm controls the camera based on the 

predicted location of the target robot. The camera will turn to the desired 

bearing, take a photograph, and pass it to the state estimation module. The 

camera will alternate photographs between multiple robots. Figure 15 

displays the Finite State Machine that will control the camera.  
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Figure 15. Finite state machine for camera control  
 

A diagram of this setup is in Figure 16.  Without loss of generality, only normalized 

control forces were calculated.         
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Figure 16. Diagram of the model used for the Direct Calculus of Variation 

method  (Ref. [17]) 
 

The problem is first defined mathematically. The system of nonlinear equations 

driving each robot’s dynamics ( 1,3i = ) is given below: 

cos( )
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i i i i

i i i i i i i i

i i i i i i i

x u
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x u F T
y v F

ψ ω
ψ α ψ ω
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=
= =
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= = + =

&

&&

&& &&& &

&&& &

  

The seven states per robot are its x and y coordinates, x and y, components of its linear 

velocity, u and v, respectively, the attitude angle ψ (defining robot’s orientation with 

respect to the x-axis), the angular velocity ω controlled by the reaction wheel, and the 

angle α defining the direction of thrust with respect to robot front. Three available 
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controls (per robot) are the magnitude of its linear acceleration 
i

i
i

ThrustF
m

=  ( max0 i iF F≤ ≤ ), 

the control input δ affecting orientation of the thrust and the angular acceleration 
i

i
i

TorqueT
I

=  ( max
i iT T≤ ).  (Ref. [17]) 

While maneuvering, all robots ( 1,3i = ) must obey the geometrical constraints of 

the arena:  0.5 ( ) 0.5iMSD x t D MSD≤ ≤ − , 0.5 ( ) 0.5iMSD y t W MSD≤ ≤ − , 0 , ft t t⎡ ⎤∈ ⎣ ⎦  (where MSD 

stands for minimum safe distance between two robots and is equal to the diameter of the 

circles drawn on Figure 16 around each robot), and avoid collisions with other robots: 

( ) ( )2 2 2( ) ( ) ( ) ( ) 0i k i kx t x t y t y t MSD− + − − ≥ ,  , 1,3,  i k i k∀ = ≠ , 0 , ft t t⎡ ⎤∈ ⎣ ⎦ . (Ref. [17]) 

It is required to satisfy the following sets of boundary conditions per each robot ( 1,3i = ): 
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  (Ref. [17]) 

In general, the performance index includes three appropriately weighted terms. The first 

one, 1
ft , assures minimum transition time for the first robot, the second one, 

2 1 3 2
f f t f f tt t t t− − ∆ + − − ∆ , guarantees sequential ( t∆ -second apart) joining the final 

formation, and the third one, 
0

3

1

i
ft

i

r t

F dt
=
∑ ∫ , takes care of minimizing overall gas consumption 

to produce thrust.  (Ref. [17]) 

To generate quasi-optimal collision-free trajectories for all three robots in real 

time (and to be able to update them every 2-3 seconds) the direct method of calculus of 

variations was chosen. (Ref. [14])  To apply it we need to introduce an independent 

argument τi for each robot ( 1,3i = ) and using the corresponding speed factors λ i 

(different for each robot) rewrite the original system as 
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cos( )

sin( )

i i i

i i i i i i

i i i i i i i i

i i i i i i i i

x u

y v

u F T

v F

λ

λ ψ ω λ

ψ α λ ω λ

ψ α λ α δ λ

′ =

′′ = =

′′ = + =

′′ = + =

 (Ref. [17]) 

Next, three reference functions (per robot) are established for coordinates ix  and 
iy , as well as for the attitude angle iψ : ( )i i

xP τ , ( )i i
yP τ  and ( )i iPψ τ , respectively ( 1,3i = ). If 

polynomials are used, then the order of polynomial to use is defined by the number of 

boundary conditions, which in this case the minimum order of approximating 

polynomials is five. (Ref. [14])  For this specific problem to have an additional flexibility 

(to allow avoiding collisions), the order of polynomials was increased by two to be able 

to vary the third derivative of ix , iy  and iψ , 1,3i =  at both ends. (Ref. [17]) 

Explanation of the optimization routine follows. Given the boundary conditions, 

nine reference polynomials, ( )i i
xP τ , ( )i i

yP τ  and ( )i iPψ τ , 1,3i = , have to be determined, and 

their coefficients computed using the boundary conditions and initial guesses on the third 

derivatives 0
ix ′′′ , i

fx ′′′ , 0
iy ′′′ , i

fy ′′′ , 0
iψ ′′′ , i

fψ ′′′ , 1,3i = . These variables along with the lengths of 

three virtual arcs i
fτ  form the vector of variable parameters Ξ . Next, applying inverse 

dynamics, the remaining states can be solved for numerically. Specifically, start by 

dividing each virtual arc i
fτ  ( 1,3i = ) onto N–1 equal pieces 

1

i
fi

N
τ

τ∆ =
−

 so that there are N 

equidistant nodes 1,j N=  along each virtual arc. For each robot, all states at the first point 

1j =  (corresponding to 1 0 0i iτ τ= = ) are defined. Additionally, define 1 1iλ = , 1,3i = . (Ref. 

[17]) 

For each of the subsequent N–1 nodes 2,j N= , the current values of robots’ 

coordinates and attitudes are calculated using each corresponding polynomial: ( )i i i
j x jx P τ= , 

( )i i i
j y jy P τ=  and ( )i i i

j jPψψ τ= , 1,3i = . Then, using the inverse dynamics for the first four 

equations of the system, the sum of angles i
jψ  and i

jα , and current control acceleration 

are calculated: arctan
i
ji i

j j i
j

y

x
ψ α

⎛ ⎞′′
⎜ ⎟+ =
⎜ ⎟′′⎝ ⎠

, 2 2i i i i
j j j jF x yλ ′′ ′′= + .  (Ref. [17]) 
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Inverting the last equation of the system and using the first of two equations, the 

second control is obtained: 2cos
i i i i
j j j ji i i i i i

j j j j j ji
j

x y x y

y
δ λ α λ ψ ψ

⎛ ⎞′′′ ′′ ′′′′′−′ ′⎜ ⎟= = −
⎜ ⎟′′⎝ ⎠

.  (Ref. [17]) 

From the first two equations of the system, the current speed, 2 2i i i
j j jV u v= + , where 

i i i
j j ju xλ ′= , i i i

j j jv yλ ′= , is defined, and therefore, the elapsed time for each robot can be 

determined: 
( ) ( )2 2

1 1

1
1

2
i i i i
j j j ji

j i i
j j

x x y y
t

V V
− −

−
−

− + −
∆ =

+
.  (Ref. [17]) 

Now, the current values of the speed factor are given by 
1

i
i
j i

jt
τλ
−

∆
=
∆

, and the current 

time for each robot is defined as 1 1 1 ( =0)i i i i
j j jt t t t− −= + ∆ .  (Ref. [17])      

Finally, the equations are inversed for the robots’ attitude to get the third control 

1
1

1

 2
i i
j ji i

j ji
jt

ψ ψ
ω ω−

−
−

−
= −

∆
 and 1

1

i i
j ji

j i
j

T
t

ω ω −

−

−
=

∆
.  (Ref. [17])    

Once all states along the trajectories are computed, the performance index is 

found.  Employing the vector of weighting coefficients w (
3

1
1h

h
w

=

=∑ ),  

( )
3 1

1 2 1 3 2
1 2 3

1 0

N
i r

f f f t f f t j
r j

J w t w t t t t w F t
−

= =

= + − − ∆ + − − ∆ + ∆∑∑ and form the aggregate penalty using an 

appropriate four-component vector of weighting coefficients k (
4

1

1q
q

k
=

=∑ ): 
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 (Ref. [17])  Note that the last three terms in the compound penalty are quite tricky 

because robots’ coordinates have to be interpolated so that they correspond to the same 

instants of time. 

Finally, a standard nonlinear constrained minimization routine is used to 

minimize the performance index while keeping the penalty within the certain tolerance: 

min J
ε∆≤Ξ
.  (Ref. [17]) 

A rest to rest maneuver was simulated from an arbitrary starting position to a 

close-in, triangular final position. Four frames from the bird’s eye view animation are 

provided in Figure 17. Robot 1 (bottom left), Robot 2 (top center), and Robot 3 (right 

center) perform the rest to rest maneuver in approximately 45 seconds. Frame (a) depicts 

the starting position, frame (b) and frame (c) depict intermediate positions, and frame (d) 

depicts the final position with the ground tracks to achieve that position. The front side of 

each robot is indicated buy a line extending from its center. The direction and magnitude 

of the rotating thruster is also indicated by the plume extending from the robots. After 

defining the initial absolute position and final relative position, the algorithm varied the 

final absolute position, time, and time factor step size (∆τ), initial and final jerk (the 

derivative of acceleration) to achieve this final position without collision and in timely 

manner. The guidance algorithm achieved these results by computing polynomials for x, 

y, and ψ for each of the robots such that all positions, velocities, and accelerations met 

the given boundary conditions. The control profiles were calculated from the inverse 

dynamics.  (Ref. [17])  

 

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=0
0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=14.67
0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=23
0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (m)

x-
ax

is
 (m

)

time=45

 
Figure 17. Example sequence at 0 (a), 15 (b), 23 (c) and 45 seconds (d) (Ref. 

[17]) 
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A summary of all parameters are shown as functions of the time factor τ in Figure 18. 
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Figure 18. Summary of parameters for Direct Calculus of Variation method (Ref. 

[17]) 

 

The next step in this implementing this algorithm would be to optimize it to point of 

being able to provide real time, closed loop solutions.  
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B. ARTIFICIAL POTENTIAL FUNCTION GUIDANCE 
In contrast to the Direct Calculus of Variation Method, Artificial Potential 

Function Guidance (APFG) provides a quick way to calculate a control input.   In 

general, APFG can be implemented in various ways, including as a trajectory planner.  

Conceptually, APFG is generally explained as positive and negative potential fields 

which the weighted sum provides gradient to follow.  This gradient hopefully ends in at 

the final desired state, or global minimum of the potential function. 

The algorithm developed here takes some of the ideas from APFG and facilitates 

easy implementation with a PID controller.    The robot using this algorithm looks for 

obstacles (i.e., other robots) that could potentially be in its way to its final destination, or 

in its “collision zone.”   It also checks if any obstacles are too close to it, or in its “safety 

zone.”  If either of these two cases exists, a correction, or, avoidance vector is added to 

the vector which directs the robot to its final desired destination.    Figure 19 illustrates 

this concept. 
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Figure 19. APFG concept 
 

In the case that there is a robot in the collision zone, a vector tangent to the 

direction of the obstacle is added to the final destination vector.  This correction would 

allow the robot to circle around an obstacle until the path to its desired location is clear.  

In the case that there is an obstacle that is within the safety zone of the robot, a correction 

vector in the opposite direction is added to the final point.  The resulting steering point is 
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therefore the vector sum of up to five vectors: the unobstructed final destination; up to 

two tangent vectors if there are obstacles between the robot and the final destination; and 

up to two repulsive vectors, if there are obstacles too close to the robot.  This 

combination of vectors provides a temporary point for the PID controller to steer towards.  

As the robots move and the system changes, so does the steer point.  Once the path to the 

final destination point is clear the robot can proceed directly to it. 

APFG offers a quick solution, but suffers from being non-deterministic, and non-

optimal.    There is also a problem with local minima.  This case is analogous to several 

corrective vectors being symmetric and actually canceling each other out, so no 

corrective vector is applied and a collision could result.  One way to help avoid this 

situation is by weighting the vectors differently.  For example, weighting a repulsive 

vector by 1/d, where d is the distance between the robot and the obstacle, will give a 

stronger repulsion as d decreases.  Multiplying the vector by the velocity will decrease 

the repulsion as the robot moves slower, as for the case with docking.  Furthermore, 

weighting the vector by other functions, such as dAe−  where A is a constant, or user 

defined gain, will give the system even different behavior. 

 

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Bird's Eye View

y-axis (East) (m)

x-
ax

is
 (N

or
th

) (
m

)

time=99.2

 
Figure 20. APFG simulation output 
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A simulation was conducted using an APFG algorithm with the base 

configuration described in the previous chapter.  The two other robots followed the 

trajectories calculated in the previous example; the primary robot was left to navigate on 

its own to the absolute final position without colliding with the other robots.  The 

outcome can be seen above in Figure 20, and the parameters versus time are provided in 

Figure 21. 
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Figure 21. Parameters vs. time for a APFG simulation 

 

Code written for this APFG is included in the Appendix.  Information on the 

control system for this configuration is detailed in Reference [6]. 
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IV. NAVIGATION 

There are two main purposes of Navigation: state estimation and onboard 

autonomy.  State estimation is the process of evaluating all of the system data and making 

the best possible estimates of positions, attitudes, and rates for all of the robots on the 

floor.  Generally two sets of sensors are needed for the AMPHIS testbed: onboard sensors 

for each robot to determine where they themselves are, and at least one other sensor to 

determine where the other robots are, such as LIDAR. 

A. STATE ESTIMATION 
Valid knowledge of the system state is required to effectively navigate from point 

A to point B.  In case of the described base configuration, the state consists of eighteen 

variables: the coordinates and attitudes of all three robots, and each of their rates.  The 

state could be expanded to include the positions of some sensors or actuators, or 

accelerations, etc. if desired.  The state is estimated in two separate parts: the robot 

estimates its own state, and is estimates the state of the other two robots.  The system can 

easily be configured to uses one of the following sensor groups to determine the state: 

Robot determines its own state using: 

• iGPS and the gyro 

• accelerometers, gyro, and kinematics integrator 

• kinematics integrator (simulation or open-loop control) 

• lookup table (simulation only) 

Robot determines the state of the other robots using: 

• data transmitted on the wireless LAN (via UDP) 

• LIDAR 

• lookup table (simulation only) 

The two inputs to the state estimation module are the “input_bus,” which carries all of the 

data from the onboard sensors and the wireless LAN, and the “st_dr,” which stands for 
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“state determined by dead reckoning.”  This is the output from the kinematics integrator.   

Figure 22 is the state estimation SIMULINK model. 
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Figure 22. State estimation SIMULINK model 

  

The state variables that are determined by the iGPS or from the kinematics 

integrator are explained it Reference [6].  The state variables estimated from the LIDAR 

are discussed next. 

LIDAR gives bearing and range information in a plane circling it.  The next 

section will discuss how pose estimations of the robots on the floor are made from 

LIDAR date.  Once pose estimations are made from the LIDAR data, pose estimations, 

along with the estimation a robot has made of its own state, is combined to create a entire 

state.  The function “pe2st,” or, “pose estimation to state variable,” takes the estimated 

coordinates of itself (the LIDAR is mounted in the center of the robot), along with the 

relative bearings, ranges and orientations of the other robots, and creates a three by three 

position matrix from it in absolute coordinates.  The columns of this matrix represent 

robot 1, robot 2, and robot 3, respectively.  The rows represent the x coordinate, y 

coordinate, and attitude angle, respectively.  As can be seen from Figure 23, the 

remaining state variable (the rates) are found using the derivative block and are then 
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combined to them with the vertical concatenation block.  The Kalman filter will 

significantly upgrade these values once employed. 
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Figure 23. State estimation from vision module 

 

For simulation and testing, a pose estimator simulator lets the accuracy and 

update rates be defined for pose estimation.    Figure 24 is a model of the pose estimator 

simulator. 
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Figure 24. Pose estimation simulator 

 
 

B. POSE ESTIMATION STRATEGIES USING ARTIFICIAL VISION 
Pose estimation is the process of determining an object’s position and orientation 

relative to the artificial vision sensor’s position and orientation.  Several variable sets can 

be used to describe this information.  In general, the number of variables needed to 

describe a pose is equal to the degrees of freedom of the system.  There are several 
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commonly available artificial vision sensors for that can be used for pose estimation.  

Pose estimation using LIDAR and digital imaging cameras are discussed here. Range (or 

stereo) cameras which deliver three dimensional information and omni-directional 

cameras (Bearing/Range) are two other viable sensors for this application. 

1. LIDAR (Bearing/Range) 
LIDAR gives bearing and range information in a single plane.  Since the LIDAR 

is mounted level at the top center of the robot, the plane that it measures is parallel to the 

floor at an equidistant height.  It has been experimentally shown that reflective surfaces 

and especially the special reflective LIDAR tape can greatly improve the read.   The 

LIDAR starts at a designated point on the physical unit and returns ranges at every step 

angle moving clockwise.   For the base configuration, the first angle is at 0˚ (the flat part 

of the LIDAR case) and the step angle is equal to 0.625˚.  One full revolution therefore 

provides 575 range measurements (Figure 25). 
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Figure 25. LIDAR operation and basic data return 

 
 

There are two problems that must be solved to use a LIDAR effectively with the 

AMPHIS test bed.  Firstly, other robots must be distinguished from the rest of the objects 

in the room seen by the LIDAR.  Secondly, the pose estimation of those robots must be 

made.  The first problem is somewhat artificial, since in space, there would not be any 

clutter in range of the proximity operations.  Therefore, it is desired to spend little  
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resources solving this problem.   The easiest way to determine what points correspond to 

robots and which do not is by finding the floor.  If there are points on the floor, they are 

assumed to be robots. 

The first step to finding is to convert the bearing and range information into xL 

and yL coordinates.  These coordinates are relative to the LIDAR, not the floor.  This 

transformation is straightforward using polar to Cartesian transformations (Figure 26). 
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Figure 26. Convert LIDAR data to Cartesian coordinates 

 
 

Taking into account the robot’s position and attitude on the floor, a transformation 

can then me made to the points from the LIDAR.  If all of these points are rotated by the 

opposite of its attitude angle, and then shifted in the x and y directions by the amount of 

its absolute coordinates, the LIDAR data will be shifted into the absolute “floor” 

coordinate system.  The origin of this coordinate system is in the bottom left corner of the 

floor (represented by the dotted green box) in Figure 27. 
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Figure 27. Finding the floor using LIDAR 

 
 

Objects are then created from the point ranges from the LIDAR.  If consecutive 

points are different by more than a prescribed amount, it is assumed that they belong to 

different physical objects.  Assigning each point to an object make it easier to process the 

data.  Objects that are too big, too small, or too far away can easily be discarded (Figure 

28).  It is important to note that there is a discontinuity at the starting point (0˚/360˚).  

Therefore, those points should be considered together as a possible single object.  
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Figure 28. Assigning points to objects 
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Once objects are found, numbered, and their absolute positions are known, the 

objections on the floor are determined (because they are inside the square bounded by 

(0,0) and (14,16) feet), their relative bearings, ranges, and orientations are found (Figure 

29).  The relative bearing is estimated by finding the median bearing between the extreme 

ends of an object.  The range is found by adding approximately six inches (half the width 

of a robot) to the minimum range of the points that make up that object.  Finally, the 

orientation can be estimated by using linear regression on the line or lines made from the 

edges of the LIDAR return. 

Robot

Floor

Relative Bearing

Orientation of the Robot 
on the Bearing line

Range

Pose

1) Range

2) Relative Bearing

3) Orientation of the Robot on 
the Bearing Line

Determine 2 robot 
edges via regression

LIDAR  
Figure 29. Estimating the pose of LIDAR objects 

 

The LIDAR’s ability to track objects was successfully tested using these 

techniques.   The LIDAR scanned the room, assigned each point to an object, filtered out 

small objects and the transformed the points into the floor’s coordinated system.  The 

LIDAR processing algorithm successfully identified objects on the floor as robots, and 

ignored all other robots.  As an object (in this case, a person) moved about the floor, the 

LIDAR could track and plot the objects position and just under 0.5 Hz (once every 2.2 

seconds) on the PC104 onboard computer.  Previous experiments on faster computers 

that were conducted without plotting the results real-time were able to reach update rates 

of over 1 HZ (less than a second per update). 

2. Camera (2D Photograph)  
There are several ways to determine a pose from a two dimensional image (from 

camera, for instance), but only two methods will focused on here.  The pose 
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determination algorithms discussed here are fairly straightforward once certain key 

features, such as corners or edges, are ascertained from the photograph.  But obtaining 

these key features autonomously via image processing makes pose determination from a 

single photo a very complicated problem.  Issues that require handling include: separating 

the object you wish to from the background clutter; determine if there is something 

between the camera and the object (object obscuration); and determining if the photo you 

are examining contains enough data to even estimate a pose (i.e. a picture does not 

encompass the entire object).  Image processing techniques must be developed to 

mitigate these problems.  Although some of these image processing techniques will be 

briefly mentioned, the remainder of this section will focus on the algorithms used once 

the key features have been found. 

a. Using Points 
The first algorithm discussed here is a general pose estimation method 

using key points of a known object.  Using the “key points” of an object, such as the 

corners of a square of known size, the pose can be estimated by solving a non-linear 

system of equations for the reverse transformation of a three dimensional scene onto a 

two dimensional plane.  

For the purpose of describing the pose estimation algorithm, a coordinate 

system is chosen similar to the one in 9: the camera is centered at the origin of a left-

handed orthogonal coordinate system pointing down the positive z axis.  Positive x is to 

the left, and positive y is up.  The z axis is limited to non-negative values since negative 

values would indicate an object is behind the camera, out of its field of view.  The next 

concept to realize is that a photograph is a projection of a three dimensional scene onto a 

two dimensional plane.  This plane is called the focal, or interpretation plane.  The 

coordinate system and interpretation plane is illustrated in Figure 30.   
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Figure 30. Point pose estimation coordinate system and interpretation plane 

 

At this point, is simpler to attempt to solve the reverse problem to pose 

estimation, which is to rotate and translate an object of known shape onto the coordinate 

system and determine how it would appear on the projection plane.   Since the object is 

assumed to be known, it can be defined arbitrarily in a similar coordinate system to that 

described above.  For example, a simple square with a side length equal 1 unit can be 

defined so it is centered on, and lies completely on the xy plane.  Each corner is then 

represented by four column vectors creating the object matrix O: 

.5 .5 .5 .5

.5 .5 .5 .5
0 0 0 0

O
− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

.   

A mathematical expression can represent the rotation and translation of 

this action.  First, the rotation matrix Rαβγ is a direction cosine matrix that will rotate an 

object about the x, y, and z axes by the amounts , ,α β γ  respectively.  The Euler equation 

for a left-handed coordinate system is 

cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos
Rαβγ

γ γ β β
γ γ α α

β β α α

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.    

Next, all of the object’s key points will be translated in the x, y and z 

directions by the amounts a, b, and c respectively.  This completes the positioning of the 
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object in the three dimensional coordinate system, given by the expression 

1 ... 1
1 ... 1
1 ... 1

a
P R O b

c
αβγ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 where P is the position matrix of the object and the number of 

columns of ones is equal to the number of points in the object. 

The next step in this reverse problem solving track is to project the three 

dimensional object onto a two dimensional plane.  As seen above, the matrix to perform 

the positioning transformation must be constructed based on how many points make up 

the object, so there is not a simple formula.  Since the focal plane is defined by a constant 

z=focal length f, each point in 3-space is transformed to 2-space by the following 

formula: 9 

/
/
1

x z

y z

P P
p P P f

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.  This formula enables the ability to create a “simulated” 

photograph given a point in 3-space and a focal plane of distance f.  Again, the simulated 

photograph would be on the xy plane (the first elements of vector p). 

As shown, deriving the formula for transforming points in 3-space to a 2-

space projection is straight foreword.  Figure 31 illustrates this process. 

Object in real space

Interpretation 
Plane

Camera

 
Figure 31. Projection of an object in 3-space to 2-space 
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Estimating the pose of a known object from a photograph is simply the solving the above 

problem in reverse.  Given a the set of key object points on a photograph, solve for the 

pose, or the variables , , , , ,a b cα β γ .  Using symbols, as in MATLAB’s symbolic toolbox, 

the position matrix P (defined above) is constructed.  Each point in P (real space) has a 

corresponding point in p (on the photograph).  Each point therefore contributes two 

equations to our system of equations (one for each of the x and y coordinates of the 

photograph).  From image processing, the x-y coordinates of the photograph are 

extracted, and provided a solution for our system of equations.  Therefore, for N key 

points on a photograph, a system of 2N nonlinear equations must be solved to yield the 

pose variables , , , , ,a b cα β γ .    Figure 32 illustrates this reversed process.   

 

…solve for this 

(object in real space)

Now, given this…

(your photo)

 
Figure 32. Solving for an object in 3-space from an object in 2-space 

 

This process was implemented in MATLAB.  A square was rotated and 

translated into 3-space.  A simulated photograph of that object was taken on the focal 

plane, shown in blue in Figure 33.  Some noise, or error, was then introduced to the 

points on the two dimensional photo, and MATLAB’s fsolve function was using to derive 

the original rotation and translation amounts.  A simulated photograph of this derived 

object was taken on the focal plane, shown in dotted red in Figure 33.  These functions 

are included in the Appendix. 
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Blue line – simulated photo
Red dotted line – MATLAB solution

Camera

 
Figure 33. Pose estimation using points demonstration 

 

There are several limitations to the using the pose estimation using points 

algorithm.  One is know as the Necker’s cube illusion.  A hollow cube has ambiguous 

poses as can be seen in Figure 34.  Due to symmetry, multiple sides can appear to be the 

nearest to you.  Also, a symmetric object will have ambiguous pose solutions. 

 
Figure 34. Necker’s cube illusion 

 

Another problem that challenges this algorithm is not being able to find all 

the key points on a photograph.  As mentioned, the number of equations required to 

determine the pose of an object depends on the number of key points in the object.  If all 

the key points cannot be found, a difficult process of trying to limit the object points 

would ensue.     



55 

b. Using Edges 

Image processing occurs automatically after a digital photograph is 

received from the camera. The algorithm will first try to determine how many robots are 

in view: zero, one, or two. If there are no robots in the field of view, a search routine will 

have to be conducted. This routine is completed after initialization; once the robots are 

acquired and tracking has started, the camera will alternate amongst the moving robots 

and attempt to keep them in its field of view. If two robots are in the photo, it is preferred 

to center the camera on one robot at a time. If this is not possible, such as the case when 

one robot is behind the other, accurate pose estimates are very difficult to make. 

Each photograph is processed onboard the robot to find and determine the 

relative positions of the other robot(s). Figures 6a and 6b illustrate an example 

photograph of one of the robot used in Ref.1 and a simulated photograph assumed to be 

of Robot 3 as seen by Robot 1. The image processor locates the three vertical support 

structures from the image determines the robot’s relative position from the know size and 

shape of the robot(s) in the field of view. 

 

 
Figure 35. Actual image taken from Robot 1 
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Figure 36. Simulated image taken from Robot 1 

 

The basic algorithm for determining pose is to first determine the relative 

angle the robot is in the image frame. This is accomplished by finding the vertical corner 

support beams of the robot. Assuming that three support beams can be seen, the 

differences in the distance between the two sets of lines (i.e. the left-center, and center-

right sets of lines) will give an orientation. Using only this algorithm will result in a set of 

four ambiguous solutions, so another feature of the robot will have to be known to 

differentiate the ambiguity. For example, the vertical beams of robot with a square cross-

section will look the same when oriented at intervals of 0, π/2, π, and -π/2, so another 

known feature will have to be exploited to de-conflict the possibilities. This analysis is 

required regardless because and least one unique feature must be known of all robots so 

they can differentiate between them. Once the orientation has been determined, the 

distance to the robot is computed from the relative size and the focal length of the 

camera. The image processing itself requires a pixel analysis of the entire image. In order 

to find three vertical support beams of the robot, background clutter must first be 

separated. 

Figure 37 depicts the geometry involved in relating a robot of known size 

(square with length a) to the projection of that image on to the focal plane. In this 

situation, the camera with focal length f on Robot 1 is pointed straight ahead (up) and 

Robot 3 is in the field of view on the relative left of Robot 1. The values xL, xM, and xR are 

found by the image processing that locates the three vertical support beams. From these 3 

values and f, the relative bearing angles to each support beam ( Lβ , Mβ , Rβ ) can 
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determined. Taking the relative pointing angle of the camera into account, the formula for 

the relative bearing of Robot 3 from Robot 1 is  

arctan( / ) arctan( / )
2

R L
camera

f x f x
β α

+
= +  

The orientation of Robot 3 on this bearing is described by η , which is 

found by solving the transcendental equation 
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Finally the range from Robot 1 to Robot 3 is determined. Since the camera 

will be mounted in the center of the robot, the range determined from the geometry in 

Figure 37 can be used. The equation used to determine the range is 
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Relative orientation of Robot 3 with respect to Robot 1 is 
defined by angle η (to be found from the above 
transcendental equation).
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Once angle η is found, the range to the center of Robot 3 
from Robot 1 can be defined as follows
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Figure 37. Pose estimation geometry for the leg supports 

 

The Hough transform is a method for determining the equation for lines in 

a flat image.  The MATLAB vision processing toolbox automates this process 

significantly with the hough(image) function.  An example of how to use this function is 

depicted in Figure 38.   
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Figure 38. Hough transform example 

 

The hough() function returns a matrix of values; the high values represent 

an index to a θ  and ρ  which can be used to define the equation of a line parametrically.   

C. ONBOARD AUTONOMY 
The navigation software also provides another function: onboard autonomy.  The 

work completed here is meant to serve as a starting point, or platform, to develop robust 

guidance and control algorithms.  Cooperative spacecraft conducting proximity 

operations will most likely need to operate autonomously in several different modes, such 

as when they are kilometers apart, meters apart, or centimeters apart.  They would also 

benefit from being able to send each other messages, such as equipment status, or 

intentions.  The navigation system will act as the brain controlling these functions; it is 

the ideal place to do it, as it will also be estimating the system state. 

The navigation system is based around a finite state machine.  It will consider the 

current state (from state estimation), the desired end state (from the user definition), any 

messages from the other robots (via the wireless LAN) and the finite state machine state 

variable to determine what the guidance mode should be, how the vision sensor may need 

to be controlled, and may also communicate any knowledge with the other two robots 

(via the wireless LAN).  The navigation module is in Figure 39. 
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Figure 39. Onboard Autonomy SIMULINK model 

 

An example finite state machine was developed as an initial step for robust 

navigation.  This finite state machine commands the guidance system to not move (stay 

in position) until all of the robots have communicated that they are “ready” to invoke 

collaborative maneuvering (Figure 40).  It is important to remember that this software is 

to run on all three robots; but in this case, states are named by their absolute names 

(Robot 1, Robot 2, and Robot 3), and not their relative names.  This convention will limit 

which of the finite states each robot can go into.  

00
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12312323
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13

Each arrow represents a transition when a robot is “ready”

 
Figure 40. Example finite state machine of the onboard autonomy system 

 

This diagram may be easier to understand in words.  The transitions are explained 

assuming the perspective of Robot 1. Starting in State 0, all initialization routines are 

started.  As each robot completes its initialization routine, it will send a message to the 

other machines and transition to the next state.  In the case of Robot 1, the next state 

would be State 1, meaning Robot 1 is ready.  Likewise, when the other robots received 
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the message that Robot 1 was ready, they would transition to State 1 as well.   If Robot 2 

was the next to finish initializing, the robots would all similarly transition to State 12, 

meaning Robots 1 and 2 are both ready.  Finally, when Robot 3 sends its ready message 

to the other robots, the State 123 would be transitioned to and that represent all robots are 

ready to maneuver.   Up to this point, the guidance modes on all robots would be 

commanded not to move the robots.  

Other states can be added to this base finite state machine and robustness can be 

added with the addition of other messages, such as error messages, or the lack of 

messages, such as a lost communications scenario. 

D. LIDAR 
Paramount to the success of the AMPHIS experiment is the accurate 

determination of the system state.  In order to enable autonomous operation of a multiple 

craft system, each craft needs a sensor to reliably access the positions, and to a lesser 

extent, the pose, of the other craft in the system.  A LIDAR sensor was selected to be 

implemented first on AMPHIS because of it directly provides the two most critical 

parameters for the system state: bearing and range.  It provides a good sample rate, and 

also requires less processing time than a photograph image.  This chapter focuses on the 

actual hardware implementation of the SICK LD-OEM LIDAR.  In contrast to modeling 

and simulation, this crucial part of the experimental setup has different types of problems 

that require the physical implementation, configuration, and operation of actual hardware.   

1. SICK LD-OEM LIDAR 
The SICK LIDAR uses a class 1 (eye safe) laser.  Its primary capabilities and 

attributes are located in Table 4.   

 

Connection types RS232, CAN, ARCnet 

Ranges 24 m (5% reflection) 

50 m (20% reflection) 

100 m (90% reflection) 

250 m (with reflectors) 
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Size 10”x6”x5” 

Weight 3.2 kg 

Useful scanning angle 360˚ 

Operating Voltage 24V ± 20% 

Power consumption 36W 

Scanning Frequency 5 to 20Hz 

Angular resolution 0.125˚ 

Max pulse frequency 14.4 kHz 

Serial Data port baud rates 4800 to 115200 Bd 

Table 4. SICK LIDAR OEM Product Information 
 

2. LIDAR Setup 
The SICK LIDAR requires two physical connections to operate: a power cable, 

and a control link cable.  The power source must provide 19.2 to 28.8 V at 36 W.  Having 

the correct power supply is crucial for reliable information.  It is recommended from the 

vendor that a supply is used that is rated at twice the required 1.5A.  For testing, a HP 

6542A DC power supply rated at 0-20 V, 0-10 A was used to prevent the unnecessary 

recharging of the onboard battery, but the LIDAR is easily reconfigured between the two.  

For the control link, a RS-232 serial cable was connected to the COM port of a Windows 

XP Pentium III computer.  The SICK LIDAR has a sample application to test and 

demonstrate the capabilities of the unit.  Some example test runs are included here with 

illustrative screen shots to better depict the LIDAR capability. 

3. LIDAR Control 
The first step to controlling the SICK LIDAR was to communicate with it.  

MATLAB was selected for configuration setup and testing because of its simple, flexible, 

interface and integrated processing functions.   

There are four basic functions that must be performed to operate the LIDAR via a 

COM port: a serial port connection must be opened and closed with the scanner, and data 

must be read from, and written to the scanner.  The built in commands that directly 
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correlate to these functions in MATLAB are fopen(), fclose(), fread(), and fwrite().  Two 

other MATLAB functions, serial() and delete(), are used to identify the port to be opened, 

and delete the port when finished, respectively. 

Although the use of the tools to communicate with the SICK LD-OEM LIDAR 

are straight forward, the composition and encapsulation of command data and subsequent 

decomposition, parsing, and interpretation of status/profile data are not.  Although 

sending and receiving data to and from the scanner are similar, each is addressed 

separately to avoid confusion.  But first, it is important to state that the data passed with 

fread() and fwrite() are always in bytes, or unsigned 8-bit integers (0-255, or 0x00-0xFF) 

represented in MATLAB by double precision floating point numbers.  Depending on 

their position in the data stream, these integers may be converted to ASCII characters, 

hexadecimal values, or two bytes are combined to form 16-bit decimal values.   
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Figure 41. Illustrated output of the LIDAR 

 

All data passed to the SICK LD-OEM LIDAR must be properly formatted into a 

“packet.”  A beginning of a packet is identified by the number 2, and the end of a packet 

is identified by the number 3.  The bulk of the packet is composed of two parts: the 

command data (CD) and the Cyclic Redundancy Code (CRC).  The order of significance 

of each packet sent is left to right: the leftmost number is sent first, the rightmost number 
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is sent last.  Therefore, each packet sent to the scanner has the vector form [2 CD CRC 

3], where CD is a 1xN vector (N can have several values based on the number of 

parameters of the command being sent), and CRC is a 1x4 vector.  Although the length of 

CD can vary with that command being sent, all commands for the SICK LD-OEM 

LIDAR can fit into a single packet.  The format of CD and CRC are discussed next, in 

order. 

Command Data (CD) is the code sent to the scanner to control it.  CD originates 

as a string of characters representing a hexadecimal code.  It is important to stress that it 

is a string because each character in the string is converted to the ASCII value for that 

character before it is sent to the scanner.  For example, the sub-string ‘0A’ is not 

represented by the array [0 10], but by the array [48 65] (ascii(‘0’) =48, ascii(‘A’)=65).  

The command to convert a character string to an ASCII array in MATLAB is 

double(‘String’) (which returns [83   116   114   105   110   103] for example).  One 

major advantage of using this schema is that the command data streams sent and received 

by the scanner are limited to 16 integers, 48-57 and 65-60 (‘0’-‘9’ and ‘A’-‘F’).  These 

values make it easy keep packet header information (2 and 3) distinct from command 

data.   

An example to illustrate the format for the packet/data structure is depicted in 

Figure 42.  Note that the numbers shown in quotes are the strings that would be converted 

into an array of ASCII values as described above.   

 
STX SID DID LEN SEP CMD PARM CRC ETX

2 '00' '10' '0004' '0000' '0403' '0000' 'A3E3' 3  
Figure 42. SICK OEM LIDAR Protocol stack 

 
 

Portion Meaning Note 

STX Start of a packet Always = 2 

SID Source identifier ‘00’ is the computer ID 

DID Destination identifier ‘10’ is the scanner ID 



65 

LEN Number words remaining in the 

structure  

In this case 4 represents one word each 

for SEP, CMD, PARM, and CRC 

SEP Separator – start of the command Always ‘0000’ 

CMD Command code A list of primary commands follow 

PARM Parameters for the command Number of parameters vary with 

command 

CRC Cyclic Redundancy Code Calculated from all parts of the packet 

except STX, ETX, and CRC 

ETX End of a packet Always = 3 

Table 5. SICK OEM LIDAR Protocol Meaning 
 

This example is the command to start the LIDAR spinning. 

The Cyclic Redundancy Code (CRC) is a bit hash of the CD to ensure that it is 

genuine and was not received in error.  The CRC is a 16-bit hexadecimal number that is 

calculated from the CD.  It also must be converted to an ASCII array before it is sent to 

the scanner.  Since the CRC is always 16-bits, the ASCII array that represents it is always 

four numbers in length.  The CRC signature is calculated using the generator polynomial 

x16 + x12 + x5 + 1 as recommended by the ITU.T V.42 (former CCITT).  A MATLAB 

implementation of the CRC calculator was written based on a C++ algorithm that came 

with the SICK LD-OEM LIDAR (Ref. [13]).   

Every command sent to the scanner prompts a return of data from the scanner.   

For many commands, this returned data is simply a status of the command sent (success 

or failure).   In these cases, the returned data can fit into a single packet, but the data 

length of a profile normally requires several packets to encompass the entire data stream.  

For this reason, synchronization between the scanner and the code controlling the scanner 

is essential.  When scanner needs to send data through the serial port, it temporarily 

stores that data in a buffer on the buffer.  When the fread() command gets the data from 

the buffer, the buffer is cleared to make room for more data.  Profiles that are too large to 

fit in the buffer must be emptied promptly before new data overwrites the buffer.  
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To keep the scanner synchronized, MATLAB scripts or functions were written for 

every command utilized for the SICK LD-OEM LIDAR.  Each command sent is 

immediately followed by a read command to check the status of the command sent and to 

keep the buffer clear.  These read commands are completed sequentially, in serial, so 

program execution is held until either the read command is successful, or a scanner time-

out error indicated that he scanner is not responding.  Although it desired to be able to 

read data from the scanner in parallel with program execution, synchronization problems 

become too difficult to overcome. This problem exists because the scanner’s internal 

buffer size is only 512 bytes.  As data is written to the buffer, it must be read and cleared 

before the buffer is full.  If the buffer is not cleared in time, the scanner will overwrite the 

buffer, and corrupt the results. 

A read command is successful if it returns a packet (a data stream that starts with 

the number 2 and ends with the number 3).   The packet must then be parsed to determine 

its meaning.  The format for the packet/data structure is similar to that of the one depicted 

in Figure 42, with the following notes:  

• The SID and DID will be swapped to indicate the dataflow in receiving 
data is opposite than sending data. 

• The SEP field will normally contain ‘0000’ to indicate a successful 
command competition, and ‘FFFF’ to indicate a command failure. 

• The returned command code will be the same as the sent command code 
except the leftmost bit will be a 1 vice a 0 (in hexadecimal, the leftmost 
byte will be ‘8’ instead of ‘0’). 

• All parameters values are returned. 

If the packets being received are the result of a GET_PROFILE command,  

profile information is returned in multiple packets, with each packet containing a segment 

of the profile in the command fields of the packet structure (SEP, CMD, and PARM).  

These multiple segments must be gathered sequentially and then assembled to be 

processed.  Figure 43 illustrates a profile that came in five segments (and therefore five 

packets).  The first packet contains the ‘FFFF’ identifier to indicate the beginning of a 

profile.  The next word indicates the number of segments that the profile will be divided 

into, and the rest of the data in the command fields contain the information asked for in 

the user specified profile definition.  As each of the following segments are extracted 
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from the packet command fields, the first value indicates the segment number (which 

count down to 1) followed by more profile data.  Since the profile indicator and segment 

numbers do not contain profile data, they are removed once they are checked for 

consistency.  The profile data in all the segments are concatenated to be further 

examined. 
STX SID DID LEN SEP SEG PRO ---- CRC ETX

2 '10' '00' '0126' 'FFFF' '0005' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0126' '0004' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0126' '0003' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0126' '0002' #### #### #### 3

STX SID DID LEN SEG PRO ---- CRC ETX
2 '10' '00' '0056' '0001' #### #### #### 3  
Figure 43. SICK OEM LIDAR Protocol for Profile data  

 

Finally, the profile data must be processed to be used.  The first three words in a 

profile are standard: LD response, PROFILEFORMAT, and PROFILEINFO.  

PROFILEFORMAT should be the same value as set in the GET_PROFILE command.  It 

is a bit pattern that indicates how to interpret the following information.  The code ‘01B0’ 

will be used normally because it returns the most data in the least amount space.   The 

first six words give the number of points per sector, the starting direction for the sector, 

and the angle step for the sector, for each of two sectors.  For scanner design reasons, at 

least two sectors must be specified even if only one sector contains points.  In the case 

where PROFILEFORMAT = ‘01B0’, the first sector has zero points and is ignored.  The 

second sector therefore starts at 0˚, has an angle step of 0.625˚, and 575 points to give full 

360˚ coverage.  The following is an example of a GET_PROFILE command.    

SEND:  00  10  0005  0000  0301  0001  01B0  13DD 

Meaning: SID DID LEN SEP CMD NUM INFO CRC 
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The CMD is the code that represents a GET_PROFILE command.  The 

parameters shown specify to get only one profile (NUM) in the format specified by 

‘01B0’ (INFO). 

LD response 8301  

The response from the scanner, ‘8301’, is in response to ‘0301’ as described 

above. 

PROFILEFORMAT 01b0  

The PROFILEFORMAT is in the desired format. 

PROFILEINFO 01 02  

The first byte is aways ‘01’.  The second byte means there are two sectors.  The  

SEC1: Angle step 0.625 deg  

SEC1: Number of points of sector 0  

SEC1: Start direction of 359.375 deg  

SEC2: Angle step 0.625 deg  

SEC2: Number of points of sector 575  

SEC2: Start direction of 0.000 deg 

 

 All code developed to control the LIDAR is included in the Appendix. 
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V. ON ORBIT APPLICATIONS 

A. ON-ORBIT COMPARISONS (HILL’S EQUATIONS / CLOHESSY-
WILTSHIRE EQUATIONS) 
Only three degrees of freedom (DOF) are considered instead of 6 DOF that a 

rigid-body spacecraft would have. In fact, the robots are considered to move along a 

leveled surface. This simplification limits comparisons of these ground based 

experiments to operations on orbit to cases where motion between craft is in the same 

orbit plane, and each craft can maintain its orientation constant relative to the orbit plane. 

This limitation is acceptable and in line with most current concept of operations for 

orbital rendezvous; the Space Shuttle, for example, completes all rendezvous maneuvers 

with the International Space Station in a single orbit plane. (Ref [12]) The other major 

simplifications are the weightless environment of orbit flight, which is impossible to 

recreate in three dimensions in a laboratory environment. However, the special friction-

free floor approximates weightlessness in translational movement, and computer 

simulation of Hill’s equations, or other model, can be implemented to approximate 

differences between ground and on-orbit operations. (Ref [10]).  In other words, 

application of the AMPHIS 3 DOF simulator to test and evaluate 6 DOF systems 

presupposes that the spacecraft can sense, control, and maintain its pitch, roll, and out-of-

plane distance.  Assuming that these three degrees of freedom and controlled to be 

constant, the remaining three degrees of freedom can be simulated on the AMPHIS test 

bed.   Of these remaining three degrees of freedom, the rotation about the vertical axis is 

decoupled from the other two (translation in the orbit plane), and the dynamics of the 

translation in the orbit plane can be expressed easily using Hill’s equations (also known 

as the Clohessy-Wiltshire (CW) equations).  The following discussion, however, will not 

be limited to in-plane motion. 

Hill’s equations describe the relative movement of a “deputy” satellite to a “chief” 

satellite, or hypothetical mass in orbit, in three dimensions.  A set of equations can be 

derived if some simple assumptions are made (Ref. [11]): 
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• The chief is in a circular orbit with radius a. 

• The deputy is relatively close to the chief (ρ<<a).  

• There are no perturbations. 

With these assumptions, the position of the deputy can be approximated by the 

following equations: 

0 0 0 0 0(2 / 3 )cos ( / )sin 4 2 /x v n x u n x v nψ ψ= − + + + +  

0 0 0 0 0 0 0( 2 / ) (4 / 6 )sin 2 / cos (6 3 / )y y u n v n x u n x v nψ ψ ψ= − + + + − +  

0 0cos ( / )sinz z w nψ ψ= +  

These equations express the position of the deputy in the RSW coordinate system.  This 

three-dimensional, orthogonal coordinate system is defined with the origin at the position 

of the chief, the R axis points directly away from the center of the earth, the S axis points 

in the direction of the instantaneous velocity of the chief, and the W axis completes the 

right hand rule.  Therefore, the in-plane translation is represented by x and y, and the out-

of-plane position is represented by z (Ref [10]).    

The time rate of change of the true anomaly, 3n
a
µ⊕=  and ( )n timeψ = . 

The velocity terms ([ , , ] [ , , ]T Tx y z u v w=& & & ) are found by taking the derivatives of 

the position terms: 

0 0 0(2 3 )sin cosu v nx uψ ψ= + +  

0 0 0 0 0(4 6 )cos 2 sin 6 3v v nx u nx vψ ψ= + − − −  

0 0sin cosw nz wψ ψ= − +  

Notice that the z component (out-of-the-orbit plane) is completely decoupled from 

the others (in-the-orbit plane), and all the equations are functions only of time, the orbital 

radius, and the initial conditions.  For this reason, a real-time simulator was implemented 

rather easily in MATLAB.  Figure 44 illustrates the reference frame. 
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Figure 44. CW Reference frame 

 
The following bullets describe the figures used in this section. 

• Center (green axis) = The chief (reference spot) 

• The heavy line is the velocity vector 

• The green dotted line points to the earth 

• The blue star is the center of the earth (seen in the y-z plane, Figure 51) 

• Up direction = positive x axis (in-plane, altitude) opposite the radius 

vector 

• Right = positive y axis (in-plane, in-track) parallel to the chief velocity 

vector 

• Into the paper = positive z axis (out of plane, off track) 

• Cyan square = position of the deputy 

• Yellow dotted line = predicted motion based on current velocity 

• The distance from the deputy to the chief is defined as ρ 
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There are five different views available in the simulator: 

• XY plane (in-plane motion) 

• YZ plane (out-of-plane motion) 

• 3-D stationary 

• 3-D rotating (with respect to the earth) 

• 3-D rotating and translated 

A real-time simulator can be beneficial over a complicated model.  A SIMULINK 

model that calculates multiple perturbations and integrates over a variable time slice can 

take much longer than real time, and you cannot interact with it.  A real-time simulator 

can calculate positions based solely by the system clock and Hill’s equations.  If you can 

live without the accuracy, a real-time simulator can be very illustrative of on orbit 

proximity operations. 

1. Real-time Simulator Basics 
The CW Real Time Interactive Simulator (CWRTIS) developed for thesis 

research was motivated by NASA’s Rendezvous Proximity Operations Program (RPOP).  

The crew of the Space Shuttle uses this software on a laptop (Payload General Support 

Computer (PGSC)) to dock with the International Space Station.   Figure 45 is a screen 

shot from the RPOP program.  On-orbit proximity operations can be counter-intuitive 

considering relative motion of two objects in slightly different orbits.  Since RPOP was 

employed several years ago, crew performance in accurately and safely docking the 

Shuttle to the ISS has significantly increased (Ref. [12]).  

CWRTIS assumes that the deputy does not use continuous thrust, as the Space 

Shuttle does not.  Instead, it approximates thrusts to be infinitely short and produce a 

perfectly described change in velocity (∆V).  This is a good approximation considering 

the fidelity of the model.  The amount of thrust to be applied can be changed and ranges 

from 0.01 m/s and up.  The numeric keypad controls the direction of the thrust in terms of 

the x-y axis, or the reference frame described in Figure 44.  The keys 8, 4, 6, and 2 are 

intuitively placed and represent a ∆V in the up, left, right, and down direction 

respectively.  The diagonal keys (7, 9, 1, and 2) include a ∆V in two directions (also 
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intuitively placed).  The 0 key is set to stop all relative motion (or, create an equal ∆V in 

the direction opposite of the current velocity).   The 5 key will boost the current velocity 

by a factor of ∆V.  In thrusting with the keypad, the deputy’s motion and velocity are 

changed.  

 

 
Figure 45. Screen shot from NASA’s RPOP (Ref. [12]) 

 

The yellow-dotted line in Figure 44 predicts the motion of the deputy if no 

additional thrusts are made.  The length of this predictor can be interactively changed.  

The default length is one orbit period.  Figure 46 shows the predicted motion of the 

deputy for approximately two orbits.   
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Figure 46. Predicted motion for 2-3 orbits 

 
 

2. Interception Problem 
Vallado derives the intercept equations based on the Hill’s equations (Ref [10]).   

Given a “time to intercept” the following equations provide the initial velocity required to 

intercept the chief at the prescribed time. 

0 0 0
0 2

(6 ( sin )) ) sin 2 (4 3cos )(1 cos )
(4sin 3 )sin 4(1 cos )

x y n nxv ψ ψ ψ ψ ψ
ψ ψ ψ ψ

− − − − −
=

− + −
 

0 0
0

(4 3cos ) 2 (1 cos )
sin

nx vu ψ ψ
ψ

− + −
= −  

0 0 cotw z n ψ= −  

Once derived, these equations are rather straight forward.  Notice again the 

decoupling of the out-of plane motion.  Implementing these equations in CWRTIS 

validates the equations.  Arbitrarily, if the time to intercept (in seconds) is set as the 

distance from the chief to the deputy (ρ in meters), the closure rate that results is about 1 

m/s.  Figure 47 depicts the predicted motion of the deputy to rendezvous with the chief 

after the velocity was set using the intercept equations (employed by pressing the period 

key).   
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Figure 47. Rendezvous trajectory 

 

Notice that the trajectory does not necessarily have to be in-plane motion.  Interesting to 

note, the magnitude of the velocity to intercept has a non-intuitive relation to the time to 

intercept: increasing the time to intercept does not necessarily decrease the magnitude of 

the velocity required.  This simulator actually chooses a time to intercept using the 

minimum velocity required to intercept as determined by the MATLAB function 

fminsearch.  This time and velocity appears in yellow at the bottom right hand corner 

of views 1 and 2.  

3. Relative Motion Obits 
Alfriend demonstrates that by selectively choosing the in track velocity, the 

relative motion orbit can be a stationary 2x1 ellipse (Ref. [11]).  If 2v nx= − , the 

relationship between x and y become constant: 2 2 / 4x y const+ = , which is an ellipse.  

The size and location of the ellipse is based on the other variables (z,u,w,n).   Figure 48 

depicts the relative orbit of the deputy about the chief.   
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Figure 48. Elliptical Relative Orbit 

 

Interestingly, the size and orientation of the ellipse can be changed by thrusting in the x 

and z directions.  Thrusting in the v direction will disrupt the aforementioned relationship 

and therefore the stationary ellipse.  Alfriend further derives Hill’s equations in terms of 

the orbital elements so these relative motion orbits can be more easily implemented to 

real orbits (Ref. [11]).  Theoretically these orbits can be maintained with little fuel; 

however some elliptical relational orbits are too sensitive to perturbations to be practical.  

Again, this simulation ignores perturbations, so that that analysis is not accomplished 

here. 

Also described by Alfriend are circular orbits relative to orbit plane and projected 

on the YZ plane.  These orbits are examined by looking at the general solutions to Hill’s 

equations listed in Vallado (in slightly different notation) (Ref. [10], [11]): 

0sin( )cx x C nt ψ− = + , 
0 02 cos( )c cy y y t C nt ψ− = + +& , 0sin( )z D nt ϕ= +  
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The constants C and D are expressed as: 

2 2
0 0

0
23 v uC x
n n

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 
2

20
0

wD z
n

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

The center point about which the relative orbit centers upon is denoted as (xc, yc, 

zc).  It is possible that the y term actually moves.  The relationships of this center point 

are derived in Vallado (Ref. [10]): 

0
0

2 24
3

c
c

v yx x
n n

−
= + =

&
 

0

0
0

2
c

uy y
n

= −  

0 06 3cy nx v= − −&  

0cz z= , 0 0ϕ ψ=  

Choosing a center point of (0,0,0) and 0cy =& , the following initial conditions 

( 0 0t = , 0 0ψ = ) are found:  

0 0x =  

0 2y C=  

0 0z =  

0
0 2

nyu nC= =  

0 02 0v nx= − =  

2 2
0 0w n D z= −  

Choosing 3D C=  provides the following relationship: 

2 2 2 2 2 2 2 2 2 2sin 4 cos 3 sin 4x y z const C C C C+ + = = + + =  
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This represents a circular orbit on a sphere centered at (0,0,0).  The size of the 

circle is specified by choosing C accordingly (Figure 49). 
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Figure 49. Circular Orbit on a Sphere centered at (0,0,0) 

 

Choosing 2D C=  provides the following relationship: 

2 2 2 2 2 2 24 cos 4 sin 4y z const C C C+ = = + =  

This represents a circular orbit as projected on the YZ plane.  Again, the size of the circle 

is specified by choosing C accordingly. 

By changing the initial phase angle for the z term only ( 0 0ψ ϕ≠ ), it is also 

possible to select initial conditions that achieve a circular orbit projected onto the XZ 

plane as well.  The XY plane, however, are coupled and will always have a 2x1 

relationship for elliptical relative orbits. 
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Figure 50. Circular Orbit Projected onto the YZ plane 

 

Finally, consider a case were the center-point of the orbit is not at (0,0,0).  

Choosing a center-point of (1,1,1) creates a y-drift term: 0cy <& .  Looking at the 

trajectory of the relative orbit in the ECI frame illustrates that the motion is not elliptical.  

To magnify the effect, an impractical orbit of 70 km is chosen.  This goes against the 

assumptions made for Hill’s equations to be accurate, a>>ρ, but it is an illustration of 

what is happening mathematically.  On a more realistic scale, these effects would appear 

much smaller; however, they will still be there.  Since this orbit is not truly elliptical, it 

cannot be employed without the use of using corrective thrusts.  Figure 52 illustrates the 

features implemented in CWRTIS. 
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Figure 51.  Relative Motion in the ECI frame (a=70km, 0cy <&  ) 
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Figure 52. CWRTIS Help Screen 
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4. Applying Hill’s Equations to the AMPHIS Test Bed 

Applying Hill’s equations to the AMPHIS test bed can be accomplished easily in 

simulation, but would not be practical in hardware.  Using only the basic Hill’s equations, 

the plant dynamics could be changed to simulate relative motion behavior. (Ref. [10])   

Change from:    To: 

xfx =&&     xyfx x
232 ωω ++= &&&  

yfy =&&     xfy y &&& ω2−=  

Thrusts are denoted by f.  The orbital angular rate, ω , is a constant which depends on 

orbital altitude and the mass of the earth.  These equations express the relative 

accelerations from the (0,0) position of the floor, but could be modified to be centered 

about any part of the floor.  All code for the CWRTS is included in the Appendix. 
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VI.  CONCLUSIONS 

A. SUMMARY 
This research covers several topics within the SRL’s development of AMPHIS: 

Autonomous, Multi-Agent, Physically Interacting Spacecraft simulator test bed.  The 

software architecture has been developed.  A major portion of the software needed to run 

onboard the simulator robots was developed in the MATLAB/SIMULINK environment.  

This software can serve as a simulator, or it can be easily configured to run on multiple 

platforms.  Furthermore, it is modularized to facilitate easy plug-and-play testing of 

newer algorithms, and can simulate any portion of a scenario instead of using hardware.  

This design enables hardware in-the-loop testing.   

Several types of GNC algorithms were developed to test and validate the 

software.   First, a trajectory planning algorithm that used the Direct Calculus of 

Variation Algorithm was developed using a single camera, single thruster configuration.    

Second, an Artificial Potential Function Guidance was developed to evaluate a 

dynamically updating algorithm.  The bulk of the software was also validated during 

hardware tests. 

The usefulness of LIDAR was explored in the course of this thesis.  This research 

included the control of the LIDAR; the parsing and decoding of the data retrieved from 

the LIDAR; transforming LIDAR data into an absolute coordinate frame to help 

determine robots from other object in the room; and obtaining pose estimation 

information from the LIDAR data.   

 Onboard autonomy was examined with the development of an initial finite state 

machine.  The concepts mentioned for the simple, studied case can be expanded to 

accommodate more robust systems.  Several pose estimation strategies were also 

developed using digital imagery cameras.  Finally, on-orbit application of a 3-DOF 

simulator in a 6-DOF environment was studied through the development of a real time, 

relative motion simulator.  
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B. FUTURE WORK 

This research concludes as other research can begin.  The following is a list of 

further research topics that could accelerate the success of the AMPHIS testbed. 

• Make the hardware setup more robust and more reliable.  More research in 

this area could facilitate better results throughout the rest of the system. 

• Replicate the prototype robot two more times so interactive testing can 

begin. 

• Improve the iGPS setup.  The iGPS works well with its own software, 

however, this software does not integrate well with other things.  To get 

real time iGPS updates, a better configuration that may involve directly 

decoding the iGPS receiver signal would improve the overall system 

setup. 

• Add more states to the finite state machine in the onboard autonomy.  

Once there are several robots that can interact, it would be advantageous 

for multiple guidance algorithms to change autonomously, based on the 

current state.  For example, the robot could go automatically from a 

positioning phase to a docking phase. 

• Develop a better state estimator.  The current state estimator is 

deterministic; it could be greatly improved with a Kalman filter.  A way to 

easily enable/disable sensors for different scenarios would also be helpful. 

• Port the software to LINUX/RT.  Real time LINUX could most probably 

provide all the function needed for the robot on one CPU.  Although this 

solution would be more elegant, is would displace the ease of modification 

that MATLAB provides. 

• Develop better algorithms.  Once the aforementioned improvements are 

made to the testbed, it can operate as it was intended to: to perfect GNC 

algorithms!  
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APPENDIX: MATLAB CODE 

This table contains an index to the code presented in the Appendix.  For future work on 

the AMPHIS project, these files can be found in the SRL shared directory under 

“\\Special.ern.nps.edu\srl$\BlakeEikenberry\Thesis Code.” 

1) Pose Estimation from Points Code 

• testbed.m 

• makexfrom.m 

• poseest.m 

• poseesttest.m 

• posexform.m 

• simphoto.m 

• plotobj.m 

2) Direct Calculus of Variation Method Code 

• computetraj.m 

• draw_traj.m 

3) AMPHIS xPC Target Artificial Potential Function Guidance Code 

• apfg.m 

4) AMPHIS xPC Target Initialization Code 

• global_props.m 

• initialize.m 

• pe2st.m 

• portConfig.m 

• THRUSTSIMINIT.m 



86 

5) AMPHIS Animation Code 

• anim_floor.m 

• draw_dev.m 

• draw_floor.m 

• draw_foto.m 

• draw_robot.m 

6) AMPHIS Windows XP Related Code 

• closeport.m 

• hex2decword.m 

• LidarBaud.m 

• LidarCRC.m 

• LidarGetprofile.m 

• LidarIdlem 

• LidarInit.m 

• LidarMeasure.m 

• LidarMeasureStop.m 

• LidarParse.m 

• LidarProfile.m 

• LidarRead.m 

• LidarSpin.m 

• LidarTest.m 

• openport.m 

• plotProfile.m 

• poseProfile.m 
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• readdata.m 

• writedata.m 

7) Clohessy-Wiltshire Real Time Simulator Code 

• CW.m 

• userevent.m  

• findminV.m 

• plotorb.m 
 
 
 
 
%% testbed.m 
%  this is the test bed for testing a pose estimation algorithm using 
%  points 
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
clc; close all; 
fl=1; % focal length 
  
%  define figure 
obj.name = 'triangle'; 
obj.points=[-.5 -.5  .5 ; 
            -.5  .5  .5 ; 
              0   0   0]; 
obj.path=[1 2 3 1]; 
  
makexform(obj) 
  
% test pose - try different poses 
rot=[45,-20,40]; % degrees 
pos=[1,-3,10]; 
  
[err, Pe]=poseesttest(obj,[rot pos],fl) 
  
%  define figure 
obj.name = 'square'; 
obj.points=[-.5 -.5  .5  .5; 
            -.5  .5  .5 -.5; 
              0   0   0   0]; 
obj.path=[1 2 3 4 1]; 
 

 

%% poseesttest.m 
%  this function takes an object in 3-space, projects it onto a focal plane 
%  adds noise, and then tries to estimate the pose of the object using only 
%  the noisy projection in 2-space.  
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function [err, Pe]=poseesttest(obj,X,fl) 
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% get simulated image points 
X(1:3)=[deg2rad(X(1:3))]; 
[p,P]=simphoto(obj, X, fl); 
  
% p=simulated points on image 
% P=actual points in space; the unknown 
plotobj(obj,P,3,'b'); hold on; plotobj(obj,p,3,'b:'); 
figure; plotobj(obj,p,2,'b'); 
  
p(3,:)=[]; p=p(:);  % reshape points to match non linear functions  
  
Xi=[0,0,0,0,0,20];  % initial guess 
Xe=poseest(obj, p, Xi, fl); 
  
[pe,Pe]=simphoto(obj,Xe,fl); 
  
hold on; plotobj(obj,pe,2,'r:'); 
  
err=Xe-X; 
 
 
%% makexfrom.m 
%  this function wil creat the proper transform to project it  
%  from 3-space to 2-space 
%  Written by LCDR Blake Eikenberry, 2005-2006 
 
function s=makexform(obj) 
syms x y z a b g f real 
pos=[x;y;z]; % position 
rot=[a,b,g]; % rotation 
Rabg = [cos(g) -sin(g) 0; sin(g) cos(g) 0; 0 0 1]*... 
       [cos(b) 0 sin(b); 0 1 0; -sin(b) 0 cos(b)]*... 
       [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]; 
P=Rabg*obj.points; 
% translate the object  
for i=1:length(P) 
    P(:,i)=P(:,i)+pos; 
end 
clear s; 
for i=1:length(P); 
    s(:,i)=simple([P(1,i)*f/P(3,i);P(2,i)*f/P(3,i)]); 
end 
s=s(:); 
 
 
 
%% posexform.m 
%  this function perfroms the 3-D to 2-D transfrom on a paerticular object  
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function X=posexform(v,p,f) 
a=v(1); b=v(2); g=v(3); x=v(4); y=v(5); z=v(6); 
X=[  
  
[ -(cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)-2*x)*f/(sin(b)-
cos(b)*sin(a)+2*z)] 
[ -(sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)-2*y)*f/(sin(b)-
cos(b)*sin(a)+2*z)] 
[ (-cos(g)*cos(b)-
sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)+cos(b)*sin(a)+2*z)] 
[ (-
sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)+cos(b)*sin(a)+2
*z)] 
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[ -(cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)-
cos(b)*sin(a)-2*z)] 
[ -(sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)-
cos(b)*sin(a)-2*z)] 
     
  
  
]; 
X=X-p; 
  
return 
  
% square 
[ (cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)-2*x)*f/(-
sin(b)+cos(b)*sin(a)-2*z)] 
[ (sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)-2*y)*f/(-
sin(b)+cos(b)*sin(a)-2*z)] 
[ (-cos(g)*cos(b)-
sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)+cos(b)*sin(a)+2*z)] 
[ (-
sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)+cos(b)*sin(a)+2
*z)] 
[ -(cos(g)*cos(b)-sin(g)*cos(a)+cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)-
cos(b)*sin(a)-2*z)] 
[ -(sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)+2*y)*f/(sin(b)-
cos(b)*sin(a)-2*z)] 
[ -(cos(g)*cos(b)+sin(g)*cos(a)-
cos(g)*sin(b)*sin(a)+2*x)*f/(sin(b)+cos(b)*sin(a)-2*z)] 
[ (-sin(g)*cos(b)+cos(g)*cos(a)+sin(g)*sin(b)*sin(a)-
2*y)*f/(sin(b)+cos(b)*sin(a)-2*z)] 
 
 
 
 
 
%% simphoto.m 
%  this function takes an object in 3-space and plots it's projection 
%  onto a 2-D plane 
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function [p,P]=simphoto(obj, X, f) 
pos=X(4:6)'; % position 
rot=X(1:3); % rotation 
  
a = rot(1); b = rot(2); g = rot(3); 
Rabg = [cos(g) -sin(g) 0; sin(g) cos(g) 0; 0 0 1]*... 
       [cos(b) 0 sin(b); 0 1 0; -sin(b) 0 cos(b)]*... 
       [1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]; 
P=round(Rabg*obj.points*1e2)/1e2; 
% translate the object  
for i=1:length(P) 
    P(:,i)=P(:,i)+pos; 
end 
p=[]; 
for i=1:length(P); 
    p(:,i)=[P(1,i)*f/P(3,i);P(2,i)*f/P(3,i);f]; 
end 
 
 
 
 
%% poseest.m 
%  this function take an object defined by corner points  
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%  and it's projection on a 2-D plane and tries to estimate it's 
%  pose in 3-space 
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function [Xe]=poseest(obj, p, xi, fl) 
warning off Optimization:fsolve:NonSquareSystem 
[Xe,FVAL,EXITFLAG,OUTPUT]=fsolve(@posexform,xi,optimset('fsolve'),p,fl); 
 
 
 
 
%% plotobj.m 
%  This function simply plots an object in 3-space 
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function []=plotobj(obj,p,D,def) 
ind=obj.path; 
path=p(:,ind); 
path=path'; 
x=path(:,1); 
y=path(:,2); 
z=path(:,3); 
if D==3 
    plot3(x,z,y,def); hold on; 
    plot3(0,0,0,'r.') 
    xlabel('x'); ylabel('z'); zlabel('y'); 
else 
    plot(x,y,def); hold on; 
    plot(0,0,'r.') 
    xlabel('x'); ylabel('y');; 
end 
axis equal; grid on;  
hold off; 
 
 

 

 
%% computetraj.m 
%  this function computes a trajectory for the AMPHIS testbed using the  
%  Direct Calculus of Variation Method 
%  Written by LCDR Blake Eikenberry, 2005-2006 
%  Much help from Oleg Yakimenko 
  
function traj=computetraj(c) 
  
% tic 
% min = fminHJ(@(x) cost(x,c), [8,0,0,0,1,0,3,0,0,0,0,0,0]) 
% toc 
  
min = [10.4805;0;0;0;1;0;3;.6499;.1158;.3888;.2599;-.1065;-1.1829]; 
  
[traj]=trajectory(min,c); 
%[C,J,P]=cost(min,c) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [COST,J,P]=cost(FREE,CONST) 
  
Fmax=1; Tmax=10; W=5; D=5; MSD=.41; 
  
traj=trajectory(FREE,CONST); 
time=traj.time; dtime=traj.dtime; 
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T=traj.T; F=traj.F; d=traj.delta; 
x=traj.x; y=traj.y; 
xp=traj.xp; yp=traj.yp; 
  
% calulate cost and penalty functions 
  
% J=[1 1 0]/2* ... 
%     [time(1,end); ... 
%      abs(time(2,end)-(time(1,end)))+abs(time(3,end)-time(2,end)); ... 
%      sum(sum(F.*dtime))]; 
%  
% P=[1 1 0 0 0 0 ]/2* ... 
%     [sum(sum(max(0, F-Fmax).^2)); ... 
%     sum(sum(max(0,abs(T)-Tmax).^2)); ... 
%     sum(sum(max(0,abs(x-D/2)-D/2+MSD).^2 + max(0,abs(y-W/2)-W/2+MSD).^2)); 
... 
%     sum(max(0,2*MSD-sqrt((xp(1,:).*dtime(1,:)-
xp(2,:).*dtime(2,:)).^2+(yp(1,:).*dtime(1,:)-yp(2,:).*dtime(2,:)).^2))); ... 
%     sum(max(0,2*MSD-sqrt((xp(1,:).*dtime(1,:)-
xp(3,:).*dtime(3,:)).^2+(yp(1,:).*dtime(1,:)-yp(3,:).*dtime(3,:)).^2))); ...     
%     sum(max(0,2*MSD-sqrt((xp(3,:).*dtime(3,:)-
xp(2,:).*dtime(2,:)).^2+(yp(3,:).*dtime(3,:)-yp(2,:).*dtime(2,:)).^2)))]; 
  
J=norm(time(:,end))+abs(max(max(F))); 
P=norm(sum(max(0,abs(x-D/2)-D/2+MSD).^2 + max(0,abs(y-W/2)-W/2+MSD).^2)); 
COST=[.2 .8]*[J; P]; 
COST=norm(time(:,end)-[30;15;25]); 
%fprintf('%0.2f, %0.2f\n', norm(time(:,end)), abs(max(max(F)))) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function traj=trajectory(FREE,CONST) 
  
TAUf=FREE(1);  
% POSf=FREE(2:4)';  
POSf=[3.5;2;-1];  
BASE=1; 
%XPPP0=FREE(BASE+(1:3)).*cos(FREE(BASE+(4:6))); 
%YPPP0=FREE(BASE+(1:3)).*sin(FREE(BASE+(4:6))); 
XPPP0=[0; 0; 0]; 
YPPP0=[0; 0; 0]; 
  
XPPPf=FREE(BASE+(7:9)).*cos(FREE(BASE+(10:12))); 
YPPPf=FREE(BASE+(7:9)).*sin(FREE(BASE+(10:12))); 
  
X0=CONST(1:3); Y0=CONST(4:6); T0=CONST(7:9); 
U0=CONST(10:12); V0=CONST(13:15); W0=CONST(16:18); 
  
PE2f=CONST(19:21); PE3f=CONST(22:24); 
  
[IG1,IG2,STf] = pe2st(POSf, PE2f, PE3f); 
Xf=STf(:,1); Yf=STf(:,2); Tf=STf(:,3); 
  
syms tauf x0 xp0 xpp0 xppp0 xf xpf xppf xpppf real 
A=[ 1 0 0 0 0 0 0 0;... 
    0 1 0 0 0 0 0 0;... 
    0 0 1 0 0 0 0 0;... 
    0 0 0 1 0 0 0 0;... 
    1  tauf tauf^2/2 tauf^3/6 tauf^4/24 tauf^5/60 tauf^6/120 tauf^7/210;... 
    0  1    tauf     tauf^2/2 tauf^3/6  tauf^4/12 tauf^5/20  tauf^6/30;... 
    0  0    1        tauf     tauf^2/2  tauf^3/3  tauf^4/4   tauf^5/5;... 
    0  0    0        1        tauf      tauf^2    tauf^3     tauf^4]; 
b=[x0 xp0 xpp0 xppp0 xf xpf xppf xpppf]'; 



92 

a=A\b; 
a=collect(a,tauf); 
N=length(a); 
  
% define boundary conditions 
% {'x0','xp0','xpp0','xppp0','xf','xpf','xppf','xpppf','tauf'} 
BND{1}={X0(1),U0(1),0,XPPP0(1),Xf(1),0,0,XPPPf(1),TAUf}; 
BND{2}={X0(2),U0(2),0,XPPP0(2),Xf(2),0,0,XPPPf(2),TAUf}; 
BND{3}={X0(3),U0(3),0,XPPP0(3),Xf(3),0,0,XPPPf(3),TAUf}; 
BND{4}={Y0(1),V0(1),0,YPPP0(1),Yf(1),0,0,YPPPf(1),TAUf}; 
BND{5}={Y0(2),V0(2),0,YPPP0(2),Yf(2),0,0,YPPPf(2),TAUf}; 
BND{6}={Y0(3),V0(3),0,YPPP0(3),Yf(3),0,0,YPPPf(3),TAUf}; 
BND{7}={T0(1),W0(1),0,0,Tf(1),0,0,0,TAUf}; 
BND{8}={T0(2),W0(2),0,0,Tf(2),0,0,0,TAUf}; 
BND{9}={T0(3),W0(3),0,0,Tf(3),0,0,0,TAUf}; 
dtau=.5; tau=[0:dtau:TAUf]; 
  
clear A 
% Calculate trajecotries (3+3 7th order case) 
for i=1:9 
    A{i}=subs(a,... 
        {'x0','xp0','xpp0','xppp0','xf','xpf','xppf','xpppf','tauf'},... 
        BND{i}); 
    Ax{i}     =diag([1,1,1/2,1/6,1/24,1/60,1/120,1/210])*A{i}; 
    Axp{i}    =diag([0,1,1,1/2,1/6,1/12,1/20,1/30])*A{i}; 
    Axpp{i}   =diag([0,0,1,1,1/2,1/3,1/4,1/5])*A{i}; 
    Axppp{i}  =diag([0,0,0,1,1,1,1,1])*A{i}; 
    Cx(i,:)   =Ax{i}([N:-1:1]); 
    Cxp(i,:)  =Axp{i}([N:-1:2]); 
    Cxpp(i,:) =Axpp{i}([N:-1:3]); 
    Cxppp(i,:)=Axppp{i}([N:-1:4]); 
    X(i,:)    =polyval(Cx(i,:),tau); 
    Xp(i,:)   =polyval(Cxp(i,:),tau); 
    Xpp(i,:)  =polyval(Cxpp(i,:),tau); 
    Xppp(i,:) =polyval(Cxppp(i,:),tau); 
end % i 
  
% Put trajectories in robot terms 
  
for i = 1:3 
    x(i,:)=X(i,:); 
    xp(i,:)=Xp(i,:); 
    xpp(i,:)=Xpp(i,:); 
    xppp(i,:)=Xppp(i,:); 
    y(i,:)=X(i+3,:); 
    yp(i,:)=Xp(i+3,:); 
    ypp(i,:)=Xpp(i+3,:); 
    yppp(i,:)=Xppp(i+3,:); 
    t(i,:)=X(i+6,:); 
    tp(i,:)=Xp(i+6,:); 
    tpp(i,:)=Xpp(i+6,:); 
    tppp(i,:)=Xppp(i+6,:); 
  
    % Calculate Controls 
  
    time(i,1)=1e-5; L(i,1)=1; 
    u(i,1)=xp(i,1); v(i,1)=yp(i,1); 
    V(i,1)=sqrt(u(i,1)^2+v(i,1)^2); 
    dtime(i,1)=sqrt((x(i,2)-x(i,1))^2+(y(i,2)-y(i,1))^2)/V(i,1); 
    w(i,1)=0; T(i,1)=0; 
  
    for j = 2:length(tau) 
        time(i,j)=time(i,j-1)+dtime(i,j-1); L(i,j)=dtau/dtime(i,j-1); 
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        u(i,j)=L(i,j)*xp(i,j); v(i,j)=L(i,j)*yp(i,j); 
        V(i,j)=sqrt(u(i,j)^2+v(i,j)^2); 
        dtime(i,j)=2*sqrt((x(i,j)-x(i,j-1))^2+(y(i,j)-y(i,j-
1))^2)/(V(i,j)+V(i,j-1)); 
        w(i,j)=(t(i,j)-t(i,j-1))/dtime(i,j-1)*2-w(i,j-1); 
        T(i,j)=(w(i,j)-w(i,j-1))/dtime(i,j-1); 
    end % j 
  
    p(i,:)=atan2(ypp(i,:), xpp(i,:)); 
    F(i,:)=sqrt(xpp(i,:).^2+ypp(i,:).^2).*L(i,:); 
    d(i,:)=((xppp(i,:).*ypp(i,:)-xpp(i,:).*yppp(i,:))./... 
        (ypp(i,:)+1e-20).*cos(p(i,:)).^2-tp(i,:)).*L(i,:); 
end % i 
  
traj.time=time; 
traj.T=T; 
traj.F=F; 
traj.delta=d; 
traj.dtime=dtime; 
traj.x=x; 
traj.y=y; 
traj.xp=xp; 
traj.yp=yp; 
traj.u=u; 
traj.v=v; 
traj.w=w; 
traj.lambda=L; 
traj.theta=t; 
traj.psi=p; 
traj.tau=tau; 
traj.alpha=p-t; 
 
 
 
 
%% draw_traj.m 
%  this function plots trajectory information for analysis 
%  Written by LCDR Blake Eikenberry, 2005-2006 
 
function draw_traj(traj) 
  
col='brg'; shp='-d.'; 
  
tau=traj.tau; 
T=traj.T; 
F=traj.F; 
d=traj.delta; 
dtime=traj.dtime; 
x=traj.x; 
y=traj.y; 
L=traj.lambda; 
time=traj.time; 
t=traj.theta; 
p=traj.psi; 
u=traj.u; 
v=traj.v; 
w=traj.w; 
alf=traj.alpha; 
  
  
for i=1:3 
    % plot x vs y 
    figure(1) 
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    plot(y(i,:),x(i,:),[shp(i) col(i)]); hold on 
  
    figure(2) 
    % plot L vs tau 
    subplot(5,3,1) 
    plot(tau,L(i,:),[shp(i) col(i)]); hold on 
  
    % plot time vs tau 
    subplot(5,3,3) 
    plot(tau,time(i,:),[shp(i) col(i)]); hold on 
  
    % plot dtime vs tau 
    subplot(5,3,2) 
    plot(tau,dtime(i,:),[shp(i) col(i)]); hold on 
  
    % plot x vs tau 
    subplot(5,3,4) 
    plot(tau,x(i,:),[shp(i) col(i)]); hold on 
  
    % plot y vs tau 
    subplot(5,3,5) 
    plot(tau,y(i,:),[shp(i) col(i)]); hold on 
  
    % plot theta vs tau 
    subplot(5,3,6) 
    plot(tau,t(i,:),[shp(i) col(i)]); hold on 
  
    % plot psi vs tau 
    subplot(5,3,15) 
    plot(tau,p(i,:),[shp(i) col(i)]); hold on 
  
    % plot F vs tau 
    subplot(5,3,10) 
    plot(tau,F(i,:),[shp(i) col(i)]); hold on 
  
    % plot T vs tau 
    subplot(5,3,12) 
    plot(tau,T(i,:),[shp(i) col(i)]); hold on 
  
    % plot d vs tau 
    subplot(5,3,11) 
    plot(tau,d(i,:),[shp(i) col(i)]); hold on 
  
    % plot u vs tau 
    subplot(5,3,7) 
    plot(tau,u(i,:),[shp(i) col(i)]); hold on 
  
    % plot v vs tau 
    subplot(5,3,8) 
    plot(tau,v(i,:),[shp(i) col(i)]); hold on 
  
    % plot w vs tau 
    subplot(5,3,9) 
    plot(tau,w(i,:),[shp(i) col(i)]); hold on 
  
    % plot w vs tau 
    subplot(5,3,13) 
    plot(y(i,:),x(i,:),[shp(i) col(i)]); hold on 
  
    % plot alpha vs tau 
    subplot(5,3,14) 
    plot(tau,alf(i,:),[shp(i) col(i)]); hold on 
end % i 
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% label plots 
  
figure(1) 
xlabel('y'), ylabel('x') 
axis equal, axis([0 14 0 16]*.3048) 
  
figure(2)     
subplot(5,3,1), ylabel('\lambda') 
subplot(5,3,2), ylabel('\Delta t (s)') 
subplot(5,3,3), ylabel('t (s)') 
subplot(5,3,4), ylabel('x (m)') 
subplot(5,3,5), ylabel('y (m)') 
subplot(5,3,6), ylabel('\psi (rad)') 
subplot(5,3,7), ylabel('u (m/s)') 
subplot(5,3,8), ylabel('v (m/s)') 
subplot(5,3,9), ylabel('\omega (rad/s)') 
subplot(5,3,10), ylabel('F (N/kg)') 
subplot(5,3,11), ylabel('\delta (rad/s)') 
subplot(5,3,12), ylabel('T (s^{-2})') 
subplot(5,3,13), ylabel('TBD') 
subplot(5,3,14), ylabel('\alpha (rad)') 
subplot(5,3,15), ylabel('\alpha + \psi (rad)') 
legend('Robot_1', 'Robot_2', 'Robot_3',0) 
  
for i = 1:15 
    subplot(5,3,i) 
    xlabel('\tau'),% axis tight 
end 
  
subplot(5,3,13), ylabel('x-axis (m)'), xlabel('y-axis (m)') 
axis equal, axis([0 14 0 16]*.3048) 
 
 
 
function[x,fval,exitflag]=fminHJ(Fun,x) 
%FMINHJ Multidimensional unconstrained nonlinear minimization (Hooke-Jeeves). 
%   X = FMINHJ(FUN,X0) starts at X0 and attempts to find a local minimizer  
%   X of the function FUN.  FUN is a function handle.  FUN accepts input X   
%   and returns a scalar function value F evaluated at X. X0 can be a scalar  
%   or vector. 
%   [X,FVAL]= FMINHJ(...) returns the value of the objective function, 
%   described in FUN, evaluated at X. 
%   [X,FVAL,EXITFLAG] = FMINHJ(...) returns an EXITFLAG that describes  
%   the exit condition of FMINHJ. Possible values of EXITFLAG and the  
%   corresponding exit conditions are 
% 
%    1  FMINSEARCH converged to a solution X. 
%    0  Maximum number of function evaluations or iterations reached. 
% 
%   Examples 
%     FUN can be specified using @: 
%        X = fminHJ(@sin,3) 
%     finds a minimum of the SIN function near 3. 
% 
%   FMINHJ uses the Hooke-Jeeves pattern search (direct search) method. 
% 
  
%   Reference: Hooke, R., and Jeeves, T.A., "'Direct Search' Solution of 
%   Numerical and Statistical Problems," Journal of the Assoc. Comput. Mach., 
%   Vol.8, No.2, 1961, pp.212-229. 
  
%   Copyright 2006 by Oleg Yakimenko 
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Fun = fcnchk(Fun);      % place Fun into "function" (inline) form 
  
prnt=0;                 % printout all intermediate steps 
  
sumb=[' ','*']; 
  
% all varied parameters should have the same scale (however here it's assumed 
% that the last varied parameter is the largest, so that the step size will 
% be defined using its scale) 
n = length(x);          % number of varied parameters 
scale = abs(x(n)); if scale == 0, scale=n; end       
  
hvar0 = scale/10.;      % initial step size (10% of the scale) 
hvarf = hvar0/1000.;    % final step size / x-tolerance (.01% of the scale)  
  
eps = 0.000000001;      % function tolerance  
  
k = hvar0;              % set the initial step 
  
%% Check the original (basic) point 
indexbp = 0;            % set the basic point (BP) search index 
indexps = 0;            % set the pattern search (PS) index 
  
    y = x;              % set the latest basic point 
    p = x;              % set the suggested pattern search point 
    b = x;              % set the previous pattern search point 
     
fnew = feval(Fun,x);    % call minimization function 
indexbp=indexbp+1;      % increment the basic point search index 
     
fold = fnew;             
ps = 0;                 % set the pattern search flag 
bp = 0;                 % set the pattern search flag 
  
    index=indexbp+indexps; 
    if prnt == 1, 
    varpar(index)=x(1); 
    bpflag(index)=bp; 
    perindex(index)=fnew; 
    step(index)=k; end 
  
  if prnt == 1 
  disp(' ') 
  header = ' Iteration     x       f(x)          step   BPflag   PSflag'; 
  disp(header) 
  end 
   
%% Keep looking for the minimum ... 
%  ... while the step size k is greater than the x-tolerance and the value 
%      of the objective function is greater than the function tolerance 
while (k >= hvarf) & (abs(fnew) > eps)  
  
index=indexbp+indexps; 
  if prnt == 1 
  disp(sprintf('%6.0f     %8.5f   %-10.3g   %6.3g      %c        %c',... 
                index,     x(1),      fnew,     k,  sumb(bp+1),sumb(ps+1))); 
  end 
  
%% Continue the pattern search ... 
%  ... if the objective function decreased compared to the previous 'pattern' 
%      trial, continue the pattern search, i.e. make the same move in the 
%      same direction 
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if (fold - fnew > eps) & (ps == 1) 
exitflag = 'Continuing the pattern search'; 
  
   p = 2.*y-b;          % compute the suggested PS point as b+2*(y-b) 
% !!! For constrained optimisation: This is the place to intervene!!! 
   b = y;               % reassign the latest BP to the previous PS point 
   x = p;               % assign the suggested PS point to the trial point 
   y = x; 
         
z=feval(Fun,x);         % check the lates trial point 
indexps=indexps+1;      % increment the PS index 
  
    index=indexbp+indexps; 
    if prnt == 1, 
    varpar(index)=x(1); 
    bpflag(index)=bp; 
    perindex(index)=fnew; 
    step(index)=k; end 
  
fold=fnew; 
fnew=z; 
  
%% Switch from searching around the basic point to the pattern search ... 
%  ... if the objective function decrease was achieved during a search 
%      around the basic point 
elseif (fold - fnew > eps) & (ps == 0) 
exitflag = 'Switching from BP to PS'; 
  
bp = 0;                 % lower the BP flag 
ps = 1;                 % rise the PS flag 
     
%% Stop PS, make one backward step and perform a new basic point search ... 
%  ... if the last pattern step failed 
elseif (fold - fnew <= eps) & (ps == 1)    
exitflag = 'Stepping back to start a new BP search'; 
  
        p = b;          % set everything to be equal to the previous PS point 
        y = b; 
        x = b; 
         
fnew=feval(Fun,x); 
indexps=indexps+1;      % increment the PS index 
  
    index=indexbp+indexps; 
    if prnt == 1, 
    varpar(index)=x(1); 
    bpflag(index)=bp; 
    perindex(index)=fnew; 
    step(index)=k; end 
  
fold=fnew; 
ps=0;                   % lower the PS flag 
  
%% Proceed with the search around the basic point 
elseif (fold - fnew <= eps) & (ps == 0)    
exitflag = 'Continuing the basic point search'; 
  
% if a search around the basic point failed, decrease the step size and 
% re-examine a vicinity of the current basic point 
    if bp == 1 
    k=k/10.;            % decrease the step size 
    end 
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% explore the basic point by making two steps (forward and backward) in 
% each direction 
            for j = 1:n 
            x(j) = y(j) + k; 
% !!! For constrained optimisation: This is the place to intervene!!! 
            z=feval(Fun,x); 
            indexbp=indexbp+1;      % increment the BP index 
    index=indexbp+indexps; 
    if prnt == 1, 
    varpar(index)=x(1); 
    bpflag(index)=1; 
    perindex(index)=fnew; 
    step(index)=k; end 
                if z < fnew 
                y(j) = x(j); 
                else 
                x(j) = y(j) - k; 
% !!! For constrained optimisation: This is the place to intervene!!! 
                z=feval(Fun,x); 
                indexbp=indexbp+1;   % increment the BP index 
    index=indexbp+indexps; 
    if prnt == 1, 
    varpar(index)=x(1); 
    bpflag(index)=1; 
    perindex(index)=fnew; 
    step(index)=k; end 
                    if z < fnew 
                    y(j) = x(j); 
                    else 
                    x(j) = y(j); 
                    end 
                end 
            fnew=min(z,fnew); 
            end 
  
bp = 1;                 % rise the BP flag 
  
end                     % if end 
end                     % while end 
  
fval=fnew; 
  
index=indexbp+indexps; 
  if prnt == 1 
  disp(sprintf('%6.0f     %8.5f   %-10.3g   %6.3g      %c        %c',... 
                index,     x(1),      fnew,     k,  sumb(bp+1),sumb(ps+1))); 
  end 
  
if prnt == 1 
close all 
subplot(3,1,1,'align') 
plot(varpar) 
hold 
plot(varpar.*bpflag,'r*') 
%ylim([min(varpar) max(varpar)]) 
xlabel('Iteration'), ylabel('Variable Parameter') 
subplot(3,1,2,'align') 
plot(perindex,'r') 
xlabel('Iteration'), ylabel('Performance index') 
subplot(3,1,3,'align') 
semilogy(step,'g') 
xlabel('Iteration'), ylabel('Step size') 
end 
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return 
 
 
 
%% apfg 
%  this function determines a point to move towards the end state 
%  and avoid collisiotn 
  
function task = guidance(gcmd, state) 
  
task=gcmd'; 
  
v = sqrt(state(4,1)^2+state(5,1)^2); 
me = state(1:2,1); 
r2 = state(1:2,2); 
r3 = state(1:2,3); 
  
d1 = dist(me,task); 
d2 = dist(me,r2); 
d3 = dist(me,r3); 
  
A= [cosd(90) sind(90); -sind(90) cosd(90)]; 
  
% Aviod robot2 if in the way 
a= r2-me; 
b= task(1:2)-me; 
c= min([(a' * b)/d1/d2,1]); 
ang = acos(complex(c)); 
  
% move tanget to robot 
if (all([abs(ang)<.4, d2<d1])) 
    task(1:2) = task(1:2) + A*a;  
end 
  
% move away from robot 
if (d2<1) 
    task(1:2) = task(1:2) - 2*a*v; 
end 
  
% Aviod robot3 if in the way 
a= r3-me; 
b= task(1:2)-me; 
c= min([(a' * b)/d1/d3,1]); 
ang = acos(complex(c)); 
  
% move tanget to robot 
if (all([abs(ang)<.4, d3<d1])) 
    task(1:2) = task(1:2) + A*a; 
end 
  
% move away from robot 
if (d3<1) 
    task(1:2) = task(1:2) - 2*a*v; 
end 
  
% find the distance between to robots 
function d=dist(v1,v2) 
d=sqrt((v1(1)-v2(1))^2+(v1(2)-v2(2))^2); 
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%% global_props.m 
%  this function defines global properties related to robot size / shape, 
%  and floor size / shape  
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function [robot, floor]=global_props 
d2r=pi/180; 
  
%% Define camera (attached to the robot's top) 
robot(1).name='Blue'; 
robot(1).sfov=23*d2r; 
robot(1).f=.1; 
robot(1).ar=4/3; 
robot(1).lc=[0.6 .6 1];  
robot(1).dc=[0 0 1];          % Define light green and dark colors 
  
a=1*.3048/2; b=1*.3048/2; h=.6; 
robot(1).crns=[... 
    -a, -b, 0;              % Robot's corners starting from the the left- 
    a, -b, 0;               % bottom-floor and going clockwise (1-2-3-4); 
    a,  b, 0; 
    -a,  b, 0; 
    -a, -b, -h;              % The same pattern is repeated at the above-floor 
    a, -b, -h;               % level (5-6-7-8), i.e. 5 is located above 1, etc. 
    a,  b, -h; 
    -a,  b, -h]; 
clear a b h d2r 
  
robot(2)=robot(1); robot(2).name='Red'; 
robot(2).lc=[1 .6 .6]; robot(2).dc=[1 0 0];           
robot(3)=robot(1); robot(3).name='Green'; 
robot(3).lc=[0.6 1 .6]; robot(3).dc=[0 1 0];          
  
floor.dim=[ 0,  0, 0;               % Square's corners starting from the origin 
    16,  0, 0;               % (left bottom) and going clockwise 
    16, 14, 0; 
    0, 14, 0]*.3048; 
 
 
 
 
%% initialize.m 
% this function defines initial and final state for an AMPHIS simulation 
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
% determine trajectories 
SAMP_TIME=.003; 
id = 3; 
  
portConfig; 
  
fpos.pe2 = [0.5714;  0.5236; 4.1888]; 
fpos.pe3 = [0.5714; -0.5236; 2.0944]; 
  
x0=[.5;3.5;2.5]; 
y0=[1;2;3.5]; 
t0=[1;2;3]; 
u0=[1;1;1]*1e-5; 
v0=[1;1;1]*1e-5; 
w0=[0;0;0]; 
  
% predetermined direct method parameters 
c=[x0;y0;t0;u0;v0;w0;fpos.pe2;fpos.pe3]; 
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TRAJ=computetraj(c); 
  
THRUSTSIMINIT; 
  
VAR.INITSTATE.x = x0(id); 
VAR.INITSTATE.y = y0(id); 
VAR.INITSTATE.t = t0(id); 
VAR.INITSTATE.xd = u0(id); 
VAR.INITSTATE.yd = v0(id); 
VAR.INITSTATE.td = w0(id); 
 
 
 
 
%% pe2st.m 
%  This function takes a robots absolute postion and the pose estimation 
%  of two other and calculates the range, relitave bearings, and absolute 
%  postions of the entire system 
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function [rng, brg, pos] = pe2st(ref, pe2, pe3) 
% this function does not compute the entire relative bearing matrix 
  
r12 = pe2(1); b12 = pe2(2); e12 = pe2(3); 
r13 = pe3(1); b13 = pe3(2); e13 = pe3(3); 
  
r23=sqrt(r12^2+r13^2-2*r12*r13*cos(b12-b13)); 
b21=b12+pi-e12; b31=b13+pi-e13; 
  
pos = [ref';  
    ref'+[r12*cos(ref(3)+b12), r12*sin(ref(3)+b12), b12-b21+pi]; 
    ref'+[r13*cos(ref(3)+b13), r13*sin(ref(3)+b13), b13-b31+pi]]; 
  
x2=pos(2,1); y2=pos(2,2); t2=pos(2,3); 
x3=pos(3,1); y3=pos(3,2); t3=pos(3,3); 
  
b23=atan2(y3-y2, x3-x2)-t2; 
b32=atan2(y2-y3, x2-x3)-t3; 
  
rng = [0, r12, r13; r12, 0, r23; r13, r23, 0]; 
brg = [0, b12, b13; b21, 0, b23; b31, b32, 0]; 
 
 
 
 
%% portConfig.m 
%  This function configures the port numbers of a robot via id# 
%  Written by LCDR Blake Eikenberry, 2005-2006 
 
PORT = 25000; 
  
switch id 
    case 1 
        ndx=[1 2 3]; 
        PORTsab = PORT + 112; 
        PORTsac = PORT + 113; 
        PORTsba = PORT + 121; 
        PORTsca = PORT + 131; 
        PORTmab = PORT + 12; 
        PORTmac = PORT + 13; 
        PORTmba = PORT + 21; 
        PORTmca = PORT + 31; 
    case 2 
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        ndx=[2 1 3]; 
        PORTsab = PORT + 121; 
        PORTsac = PORT + 123; 
        PORTsba = PORT + 112; 
        PORTsca = PORT + 132; 
        PORTmab = PORT + 21; 
        PORTmac = PORT + 23; 
        PORTmba = PORT + 12; 
        PORTmca = PORT + 32; 
    otherwise 
        ndx=[3 2 1]; 
        PORTsab = PORT + 132; 
        PORTsac = PORT + 131; 
        PORTsba = PORT + 123; 
        PORTsca = PORT + 113; 
        PORTmab = PORT + 32; 
        PORTmac = PORT + 31; 
        PORTmba = PORT + 23; 
        PORTmca = PORT + 13; 
end 
 
 
 
 
%% THRUSTSIMINIT.m 
%  This function configures physical property parameters for 
%  the AMPHIS control plant 
%  Written by Bill Price, 2006 
 
PARA.Kpx=1; 
PARA.Kdx=12; 
PARA.Kix=0; 
PARA.Kpy=PARA.Kpx; 
PARA.Kdy=PARA.Kdx; 
PARA.Kiy=PARA.Kix; 
PARA.Kpa=1; 
PARA.Kda=10; 
PARA.Kia=0; 
PARA.MASS=25; 
PARA.Iz=.25; 
PARA.MOMENTARM.x1=0; 
PARA.MOMENTARM.y1=.2; 
PARA.MOMENTARM.x2=PARA.MOMENTARM.x1; 
PARA.MOMENTARM.y2=-PARA.MOMENTARM.y1; 
PARA.h_w=.0494; 
PARA.THRUSTERACCURACY=5*pi/180; 
PARA.MAXTHRUSTSLEW=(500/84)*2*pi/60; 
PARA.MAXTHRUSTPOS=180*pi/180; 
  
  
 
 
 
 
 
%% anim_floor.m 
%% Animate Floor 
%  This function animates the AMPHIS simulation 
%  Written by LCDR Blake Eikenberry, 2005-2006 
%  Much help from Oleg Yakimenko 
 
function anim_floor(state, u1, v1) 
[robot_props, floor_props] = global_props; 
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mov = avifile('robotmov.avi','quality',100,'Compression','Indeo3','fps',5); 
time=state.time; 
[m,n] = size(time); 
for i = 1:ceil(m/100):m 
%     subplot(1,2,1); 
    draw_floor(time(i)); 
    for j = 1 : 3 
        pos=state.signals.values(1:3,j,i); 
        draw_robot(pos,robot_props(j)); 
        switch j 
            case 1 
                % camera field of view 
%                 draw_dev(j, pos, 'Cam', v1.signals.values(i,1)); 
                % 360 vectored variable thruster 
%                 draw_dev(j, pos, 'Thruster', u1.signals.values(i,1:2)); 
                % bill's front/back -pi to pi vectored variable thruster 
                draw_dev(j, pos, 'fThruster', u1.signals.values(i,1:2)); 
                draw_dev(j, pos, 'bThruster', u1.signals.values(i,3:4)); 
                % lidar output 
                draw_dev(j, pos, 'Lidar', v1.signals.values(i,[1:2,4:5])); 
            case 2 
            case 3 
        end 
    end 
    % draw camera 
%     subplot(1,2,2); 
%     data=state.signals.values(1:3,1:3,i)'; 
%     alf=v1.signals.values(i,1)+state.signals.values(3,1,i); 
%     draw_foto(1, data, alf,0,0) 
  
    mov = addframe(mov,getframe(gcf)); 
end 
mov = close(mov); 
 
 
 
 
 
%% draw_dev.m 
%  This function plots various robot devices 
%  Written by LCDR Blake Eikenberry, 2005-2006 
 
function draw_dev(me, pos, type, u) 
rbt_prop=global_props; 
x=pos(1); y=pos(2); t=pos(3); 
  
switch type 
    case 'Cam' 
        a=u+t; 
        clr=rbt_prop(me).lc; 
        sFoV=rbt_prop(me).sfov; 
        rx=40/x; ry=40/y; 
        patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],... 
            x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],... 
            clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
    case 'Thruster' 
        mag=u(1)*10; 
        a=u(2)+t+pi; 
        clr='c'; 
        sFoV=.05; 
        rx=mag/x; ry=mag/y; 
        patch(y*[1 1+ry*sin(a-sFoV) 1+ry*sin(a+sFoV) 1],... 
            x*[1 1+rx*cos(a-sFoV) 1+rx*cos(a+sFoV) 1],... 
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            clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
    case 'fThruster' 
        mag=u(1)*10; 
        d=-rbt_prop(me).crns(1); 
        a=u(2)+t; 
        clr='c'; 
        len=.3; 
        sFoV=.05; 
        rx=mag; ry=mag; 
        patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t) 
y+d*sin(t)],... 
            [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t) 
x+d*cos(t)],... 
            clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
        plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t), 
x+d*cos(t)+len*cos(a)], 'm'); 
    case 'bThruster' 
        mag=u(1)*10; 
        d=rbt_prop(me).crns(1); 
        a=u(2)+t+pi; 
        clr='c'; 
        len=.3; 
        sFoV=.05; 
        rx=mag; ry=mag; 
        patch([y+d*sin(t) y+ry*sin(a-sFoV)+d*sin(t) y+ry*sin(a+sFoV)+d*sin(t) 
y+d*sin(t) ],... 
            [x+d*cos(t) x+rx*cos(a-sFoV)+d*cos(t) x+rx*cos(a+sFoV)+d*cos(t) 
x+d*cos(t)],... 
            clr, 'LineStyle', 'none', 'FaceAlpha', .25); 
        plot([y+d*sin(t), y+d*sin(t)+len*sin(a)], [x+d*cos(t), 
x+d*cos(t)+len*cos(a)], 'm'); 
    case 'Lidar' 
        r12 = u(1); b12 = u(2); r13 = u(3); b13 = u(4); 
        x2 = x+r12*cos(t+b12); y2 = y+r12*sin(t+b12); 
        x3 = x+r13*cos(t+b13); y3 = y+r13*sin(t+b13); 
        plot(y2+.1*randn(1,10),x2+.1*randn(1,10),'.') 
        plot(y3+.1*randn(1,10),x3+.1*randn(1,10),'.') 
end 
 
%% plot_floor.m 
%  This function plots the floor for a single frame of the AMPHIS simulation 
%  Written by LCDR Blake Eikenberry, 2005-2006 
 
function draw_floor(t) 
[r_props,f_props]=global_props; 
  
% plot the floor 
hold off 
RedSquare=f_props.dim; 
fill([RedSquare(2,3) RedSquare(3,2)], [RedSquare(1,1) RedSquare(1,2)],'w'), 
hold on 
axis equal, axis([RedSquare(2,2) RedSquare(3,2) RedSquare(1,1) 
RedSquare(2,1)]); 
title('Bird''s Eye View'); 
xlabel('y-axis (East) (m)'), ylabel('x-axis (North) (m)') 
text('Color',[0.8471 0.1608 0],'FontAngle','italic',... 
    'Position',[.1 .1],... 
    'String',['time=' num2str(round(100*t)/100)]) 
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%% draw_foto.m 
%  This function plots a view of the AMPHIS floor from the perspective 
%  of a robot. 
%  Written by Oleg Yakimenko and Blake Eikenberry 2006 
 
function draw_foto(ME, FLR, psy, theta, phi) 
[robot, floor]=global_props; 
% psy=yaw, theta=pitch, phi=roll 
  
X=FLR(ME,1); Y=FLR(ME,2); T=FLR(ME,3); 
  
%% Define parameters of the square in {n} (NED) 
RedSquare=floor.dim;                 % Square's corners starting from the 
origin 
NumbofPts=length(RedSquare); 
  
%% Define camera (attached to the robot's top) 
hc=robot(ME).crns(end);               % Camera's hight above the ground 
Camera = [X; Y; hc];                  % Camera's position in {n} 
sFoV=robot(ME).sfov;                  % Semi-field of view (horizontal) 
AsRatio=robot(ME).ar;                 % Frame's aspect ratio' 
(horizontal/vertical) 
f=robot(ME).f;                        % Focal length (m) 
  
R_phi   = [1   0          0;             
           0   cos(phi)   sin(phi); 
           0  -sin(phi)   cos(phi)]; 
R_theta = [cos(theta)  0  -sin(theta)   
           0           1   0; 
           sin(theta)  0   cos(theta)]; 
  
%% Define two other robots in {b} (NED) attached to the robot's bottom 
  
if ME==1, ROBOT1=2; ROBOT2=3; end 
if ME==2, ROBOT1=1; ROBOT2=3; end 
if ME==3, ROBOT1=1; ROBOT2=2; end 
  
% Define light green and dark green colors 
RobPos=[FLR(ROBOT1,1),FLR(ROBOT1,2),0;     % Origin of the robot's {b} in {n} 
        FLR(ROBOT2,1),FLR(ROBOT2,2),0]; 
RobOr= [FLR(ROBOT1,3);FLR(ROBOT2,3)];      % Orientation of {b} wrt to {n} 
  
L(1,:)=robot(ROBOT1).lc;  
D(1,:)=robot(ROBOT1).dc;    
L(2,:)=robot(ROBOT2).lc;  
D(2,:)=robot(ROBOT2).dc; 
  
CRNS{1}=robot(ROBOT1).crns;  
CRNS{2}=robot(ROBOT2).crns; 
  
NumbofRbts=length(RobOr); 
for u=1:NumbofRbts 
R_r2n(:,:,u)  = [cos(RobOr(u))  -sin(RobOr(u))  0; 
                 sin(RobOr(u))   cos(RobOr(u))  0;  
                      0               0         1]; 
end 
  
%% Define a camera frame 
Uscale=f*tan(sFoV); 
Vscale=Uscale/AsRatio; 
  
%% i) Convert the square to the camera frame 
R_psy = [cos(psy) sin(psy) 0;  
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        -sin(psy) cos(psy) 0;  
                0        0 1]; 
             
R_n2c = R_phi*R_theta*R_psy;                     % Rotation from {n} wrt {c} 
  
imrs=R_n2c*(RedSquare'-Camera*ones(1,NumbofPts));% Coordinates in {c} 
azimuth=atan2(imrs(2,:),imrs(1,:)); 
  
u0 = f*imrs(2,:)./imrs(1,:);                     % x-coordinate in {f} (right) 
v0 =-f*imrs(3,:)./imrs(1,:);                     % y-coordinate in {f} (right) 
  
%% ii) Count the number and indices of Visible and Invisible points 
indVis=find(imrs(1,:)>0); indInv=find(imrs(1,:)<=0); 
nVis=length(indVis); nInv=NumbofPts-nVis; 
  
%% iii) Reoder the points 
if (nVis~=1) & (min(indInv)>1 & max(indInv)<NumbofPts) 
    fict=indVis; 
    indVis=(max(indInv)+1):NumbofPts; 
    indVis=[indVis 1:(min(indInv)-1)]; 
end 
  
%% iv) Assign fictituous points as substitutes for invisible points 
u(2:nVis+1)=u0(indVis); 
v(2:nVis+1)=v0(indVis); 
  
inleft=indVis(1)-1;     if inleft<1,          inleft=inleft+NumbofPts;   end 
inright=indVis(nVis)+1; if inright>NumbofPts, inright=inright-NumbofPts; end 
  
tau1=abs((-sFoV-azimuth(indVis(1)))/(azimuth(inleft)-azimuth(indVis(1)))); 
tau2=abs((sFoV-azimuth(indVis(nVis)))/(azimuth(inright)-
azimuth(indVis(nVis)))); 
imrLeft=imrs(:,inleft)*tau1+imrs(:,indVis(1))*(1-tau1); 
imrRight=imrs(:,inright)*tau2+imrs(:,indVis(nVis))*(1-tau2); 
  
ul = f*imrLeft(2)/imrLeft(1);       % Coordinates of fictituous points in {f} 
vl =-f*imrLeft(3)/imrLeft(1); 
ur = f*imrRight(2)/imrRight(1); 
vr =-f*imrRight(3)/imrRight(1); 
  
u(1)=(-Vscale-vl)*(u(2)-ul)/(v(2)-vl)+ul; v(1)=-Vscale; 
u(nVis+2)=(-Vscale-vr)*(u(nVis+1)-ur)/(v(nVis+1)-vr)+ur; v(nVis+2)=-Vscale; 
  
%% v) Convert robots centers from {n} to {c} 
imRts=R_n2c*(RobPos'-Camera*ones(1,NumbofRbts)); % Robots coordinates in {c} 
distRts=[norm(imRts(:,1),2) norm(imRts(:,2),2)]; % Distance from the origin of 
{c} 
azimuthRts=atan2(imRts(2,:),imRts(1,:));         % Robots azimuths in {c} 
  
for jr=1:NumbofRbts 
    % vi) Convert robot's corners from {b} to {n} 
    Robot=CRNS{jr}; 
    cyl=sqrt(Robot(1)^2+Robot(2)^2);          % Cylinder around the robot 
    RobCrns(:,:,jr)=R_r2n(:,:,jr)*Robot'+RobPos(jr,:)'*ones(1,8); 
    % vii) Default zeroing of left and right planes' coordinates (in {f}) 
    uR(:,2*jr-1) = zeros(4,1);  vR(:,2*jr-1) = zeros(4,1); 
    uR(:,2*jr)   = zeros(4,1);  vR(:,2*jr)   = zeros(4,1); 
    uRcolor(:,:,jr)=[L(jr,:);D(jr,:)]; 
  
    if abs(azimuthRts(jr))-sFoV<pi/2 && distRts(jr)*sin(abs(azimuthRts(jr))-
sFoV)<cyl 
        %% viii) Convert visible robot's corners from {n} to {c} 
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        imRtsCrns(:,:,jr)=R_n2c*(RobCrns(:,:,jr)-Camera*ones(1,8));   % 
Coordinates in {c} 
        %% ix) Determine the closest edge and two adjacent panels (left and 
right) 
        [dv,in]=min([norm(imRtsCrns(1:3,1,jr)),norm(imRtsCrns(1:3,2,jr)),... 
            norm(imRtsCrns(1:3,3,jr)),norm(imRtsCrns(1:3,4,jr))]); 
  
        inL=in+1;       if inL>4,   inL=inL-4;    end 
        inR=in-1;       if inR<1,   inR=inR+4;    end 
  
        Panel(:,:,2*jr-1)=[imRtsCrns(:,in,jr),imRtsCrns(:,inL,jr),...   % Left 
panel 
                           imRtsCrns(:,inL+4,jr),imRtsCrns(:,in+4,jr)]; 
        Panel(:,:,2*jr)  =[imRtsCrns(:,in,jr),imRtsCrns(:,inR,jr),...   % Right 
panel 
                           imRtsCrns(:,inR+4,jr),imRtsCrns(:,in+4,jr)]; 
  
        %% x) Determine more distant panel (left or right) to be shown first 
        dl=norm(mean(Panel(:,:,2*jr-1),2)); 
        dr=norm(mean(Panel(:,:,2*jr),2)); 
        tt=[0,1]; 
        if dl<dr, tt=[1,0]; uRcolor(:,:,jr)=[D(jr,:);L(jr,:)]; end 
  
        %% xi) Compute {f}-coordinates of the farther and closer panels 
        for jt=1:2 
            uR(:,2*jr-1+tt(jt))= f*Panel(2,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt); 
            vR(:,2*jr-1+tt(jt))=-f*Panel(3,:,2*jr-2+jt)./Panel(1,:,2*jr-2+jt); 
        end 
  
    end             % The end of the 'if' structure 
end                 % The end of the 'for' loop 
  
ord=[2,1]; if distRts(2)<distRts(1), ord=[1,2]; end 
  
%     u(5)=u(1); v(5)=v(1); 
%     uR(5,:)=uR(1,:); vR(5,:)=vR(1,:); 
  
fill([-1 1 1 -1], [-1 -1 1 1], 'w','FaceAlpha', 1) 
patch(u,v,'c','FaceAlpha', 1);  
patch(uR(:,2*ord(1)-1),vR(:,2*ord(1)-1),uRcolor(1,:,ord(1)), 'FaceAlpha', 1); 
patch(uR(:,2*ord(1)),  vR(:,2*ord(1)),  uRcolor(2,:,ord(1)), 'FaceAlpha', 1); 
patch(uR(:,2*ord(2)-1),vR(:,2*ord(2)-1),uRcolor(1,:,ord(2)), 'FaceAlpha', 1); 
patch(uR(:,2*ord(2)),  vR(:,2*ord(2)),  uRcolor(2,:,ord(2)), 'FaceAlpha', 1); 
axis equal, axis([-Uscale Uscale -Vscale Vscale]); 
title (['SimImage from ' robot(ME).name]) 
  
  
  
%% draw_robot.m 
%  this function draws a single robot on the AMPHIS floor 
%  Written by LCDR Blake Eikenberry, 2005-2006 
 
function draw_robot(pos,robot) 
x=pos(1); y=pos(2); t=pos(3); % postion/orientation of robot 
  
% Convert robot's corners from {b} to {n} 
r2n  = [cos(t) -sin(t)  0; 
        sin(t)  cos(t)  0; 
            0        0  1]; 
RobCrns=r2n*robot.crns'+[x;y;0]*ones(1,8); 
fill(RobCrns(2,1:4,1),RobCrns(1,1:4,1),robot.dc) 
radius=abs(robot.crns(1)); 
line([y y+radius*sin(t)],[x x+radius*cos(t)], 'Color', 'y') 
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%% closeport.m 
%  This function closes and deletes a serial port object 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function closeport(port) 
  
if port~=0 
    fclose(port) 
    delete(port) 
end 
 
 
 
%% hex2decword.m 
%  This function takes a vector of hex ascii values, pairs them up,  
%  and converts each pair to a decimal value  
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function out = hex2decword(in) 
try 
out=[]; j=1; 
if any([mod(length(in),4), isempty(in)]), error('wrong size'), end 
for i = 1:4:length(in) 
    out(j)=hex2dec(char(in(i:i+3))); 
    j=j+1; 
end 
catch 
    char (in) 
    error('CRASH in hex2decword') 
end 
 
 
 
%% LidarBaud.m 
%  This function sets the Baud rate on the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
disp('Set Baud Rate') 
data=double('001000080000020100010006000000010008'); 
writedata(s,data,PRNT); 
buffer=readdata(s); 
[buffer,msg]=LidarParse(buffer,PRNT); 
  
data=double('00100004000002020001'); 
writedata(s,data,PRNT); 
buffer=readdata(s); 
[buffer,msg]=LidarParse(buffer,PRNT); 
 
 
 
%% LidarCRC.m 
%  This function calculates the CRC for the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function crc=LidarCRC(data) 
% Abstract: 
% routines for calculating a 16 bits CRC signature using the generator 
% polynom x^16 + x^12 + x^5 + 1 as recommended by the ITU.T V.42 
% (former CCITT); all routines use a table driven algorithm 
% XOR table for CRC algorithm, CRC-16, ITU.T X.25 
% polynomial: h1021 
crctab = { 
    '0000', '1021', '2042', '3063', '4084', '50a5', '60c6', '70e7',... 
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    '8108', '9129', 'a14a', 'b16b', 'c18c', 'd1ad', 'e1ce', 'f1ef',... 
    '1231', '0210', '3273', '2252', '52b5', '4294', '72f7', '62d6',... 
    '9339', '8318', 'b37b', 'a35a', 'd3bd', 'c39c', 'f3ff', 'e3de',... 
    '2462', '3443', '0420', '1401', '64e6', '74c7', '44a4', '5485',... 
    'a56a', 'b54b', '8528', '9509', 'e5ee', 'f5cf', 'c5ac', 'd58d',... 
    '3653', '2672', '1611', '0630', '76d7', '66f6', '5695', '46b4',... 
    'b75b', 'a77a', '9719', '8738', 'f7df', 'e7fe', 'd79d', 'c7bc',... 
    '48c4', '58e5', '6886', '78a7', '0840', '1861', '2802', '3823',... 
    'c9cc', 'd9ed', 'e98e', 'f9af', '8948', '9969', 'a90a', 'b92b',... 
    '5af5', '4ad4', '7ab7', '6a96', '1a71', '0a50', '3a33', '2a12',... 
    'dbfd', 'cbdc', 'fbbf', 'eb9e', '9b79', '8b58', 'bb3b', 'ab1a',... 
    '6ca6', '7c87', '4ce4', '5cc5', '2c22', '3c03', '0c60', '1c41',... 
    'edae', 'fd8f', 'cdec', 'ddcd', 'ad2a', 'bd0b', '8d68', '9d49',... 
    '7e97', '6eb6', '5ed5', '4ef4', '3e13', '2e32', '1e51', '0e70',... 
    'ff9f', 'efbe', 'dfdd', 'cffc', 'bf1b', 'af3a', '9f59', '8f78',... 
    '9188', '81a9', 'b1ca', 'a1eb', 'd10c', 'c12d', 'f14e', 'e16f',... 
    '1080', '00a1', '30c2', '20e3', '5004', '4025', '7046', '6067',... 
    '83b9', '9398', 'a3fb', 'b3da', 'c33d', 'd31c', 'e37f', 'f35e',... 
    '02b1', '1290', '22f3', '32d2', '4235', '5214', '6277', '7256',... 
    'b5ea', 'a5cb', '95a8', '8589', 'f56e', 'e54f', 'd52c', 'c50d',... 
    '34e2', '24c3', '14a0', '0481', '7466', '6447', '5424', '4405',... 
    'a7db', 'b7fa', '8799', '97b8', 'e75f', 'f77e', 'c71d', 'd73c',... 
    '26d3', '36f2', '0691', '16b0', '6657', '7676', '4615', '5634',... 
    'd94c', 'c96d', 'f90e', 'e92f', '99c8', '89e9', 'b98a', 'a9ab',... 
    '5844', '4865', '7806', '6827', '18c0', '08e1', '3882', '28a3',... 
    'cb7d', 'db5c', 'eb3f', 'fb1e', '8bf9', '9bd8', 'abbb', 'bb9a',... 
    '4a75', '5a54', '6a37', '7a16', '0af1', '1ad0', '2ab3', '3a92',... 
    'fd2e', 'ed0f', 'dd6c', 'cd4d', 'bdaa', 'ad8b', '9de8', '8dc9',... 
    '7c26', '6c07', '5c64', '4c45', '3ca2', '2c83', '1ce0', '0cc1',... 
    'ef1f', 'ff3e', 'cf5d', 'df7c', 'af9b', 'bfba', '8fd9', '9ff8',... 
    '6e17', '7e36', '4e55', '5e74', '2e93', '3eb2', '0ed1', '1ef0'}; 
  
numofbytes = length(data)/4; 
initial_crc = 'ffff'; 
  
i=1; 
crc=uint16(hex2dec(initial_crc)); 
while(numofbytes) 
    numofbytes = numofbytes-1; 
    d = uint16(hex2dec(char(data(i:i+3)))); i = i+4; 
     
    a1=bitshift(crc,8); 
    a2=bitand(bitshift(d,-8),255); 
    nd=bitshift(crc,-8); 
    a3=hex2dec(crctab(nd+1)); 
    a4=bitor(a1,a2); 
    a5=bitxor(a4,a3); 
     
    crc=a5; 
     
    a1=bitshift(crc,8); 
    a2=bitand(d,255); 
    nd=bitshift(crc,-8); 
    a3=hex2dec(crctab(nd+1)); 
    a4=bitor(a1,a2); 
    a5=bitxor(a4,a3); 
     
    crc = a5; 
end 
  
crc=double(dec2hex(crc)); 
  
while length(crc)<4  % pad with ZERO if required 
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    crc = [48 crc]; 
end 
 
 
 
%% LidarGetprofile 
%  This function queries the SICK LIDAR for a profile 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function profile = LidarGetprofile(s,PRNT); 
  
% global s 
  
buffer=[]; profile = []; 
data=double('0010000500000301000101B0'); % CRC = '13DD' 
writedata(s,data,PRNT); 
  
while length(buffer) ~= 2430 
    new=readdata(s); 
    if isempty(new),  
        return,  
    end 
    buffer=[buffer new]; 
end 
  
[buffer,seg]=LidarParse(buffer,PRNT); 
seg = hex2decword(seg); 
  
ffff = seg(1); 
numofsegs = seg(2); 
profile = seg(3:end); % remove ffff and segment number 
  
for i = numofsegs-1:-1:1 
    [buffer,seg]=LidarParse(buffer,PRNT); 
    seg = hex2decword(seg); 
    seg(1)=[];  % remove segment number 
    profile=[profile, seg]; 
end 
 
 
 
%% LidarIdle.m 
%  This function makes the SICK LIDAR idle 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
disp('Idle') 
data=double('0010000300000402');  % CRC = '6836' 
writedata(s,data,PRNT); 
  
buffer=readdata(s); 
[buffer,msg]=LidarParse(buffer, PRNT); 
 
 
 
%% LidarMeasure.m 
%  This function makes the rotating SICK LIDAR activate range measuring 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
disp('Measure') 
data=double('0010000300000404'); % CRC='6830' 
writedata(s,data,PRNT); 
  
buffer=readdata(s); 
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[buffer,msg]=LidarParse(buffer, PRNT); 
 
 
 
%% LidarMeasureStop.m 
%  This function stops the SICK LIDAR from range measuring 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
disp('Spin') 
data=double('00100004000004030000'); % CRC = 'A3E3' 
writedata(s,data,PRNT); 
buffer=readdata(s); 
[buffer,msg]=LidarParse(buffer, PRNT); 
 
 
 
%% LidarParse.m 
%  This function parses data from SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function [res,cmd]=LidarParse(str, PRNT) 
res = str; cmd = []; 
  
if isempty(str), return, end 
  
m=str(find(str==2,1):find(str==3,1)); 
if length(m)>0 
    res = str(1+find(str==3,1) : end ); 
  
    STX=m(1); 
    SID=char(m(2:3)); 
    DID=char(m(4:5)); 
    LEN=hex2dec(char(m(6:9))); 
    ETX=m(end); 
  
    CRC=m(end-4:end-1); 
    crc=LidarCRC(m(2:end-5)); 
    cmd = m(10:end-5); 
  
    if PRNT 
        fprintf('STX = %2i SID = %2s DID = %2s LEN = %5i ETX = 
%2i\n',STX,SID,DID,LEN,ETX) 
        fprintf('Lidar Message: ') 
        fprintf('%c', cmd) 
        if hex2dec(char(CRC)) == hex2dec(char(crc)) 
            fprintf(': CRC match = %c%c%c%c\n', CRC) 
        else 
            fprintf(': CRC ERR %c%c%c%c//%c%c%c%c\n', crc, CRC) 
            error('STOPPING') 
        end 
    end 
end 
 
 
 
%% LidarProfile.m 
%  This function creates a profile from the data buffer from the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function [profileout,bufferout] = LidarProfile(bufferin,PRNT) 
profileout=[]; bufferout=bufferin; 
[buffer,seg]=LidarParse(bufferin,PRNT); 
if ~isempty(seg) 
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    seg = hex2decword(seg); 
else 
    return 
end 
  
ffff = seg(1); 
numofsegs = seg(2); 
profile = seg(3:end); % remove ffff and segment number 
  
for i = numofsegs-1:-1:1 
    [buffer,seg]=LidarParse(buffer,PRNT); 
    if ~isempty(seg) 
        seg = hex2decword(seg); 
    else 
        return 
    end 
    seg(1)=[];  % remove segment number 
    profile=[profile, seg]; 
end 
  
profileout=profile; 
bufferout=buffer; 
 
 
 
%% LidarRead.m 
%  This function reads datas from the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function [profile,buffer] = LidarRead(s,bufferin,PRNT) 
  
while length(buffer) ~= 2430 
    new=readdata(s); 
    if isempty(new),  
        return,  
    end 
    buffer=[buffer new]; 
end 
  
[buffer,seg]=LidarParse(buffer,PRNT); 
seg = hex2decword(seg); 
  
ffff = seg(1); 
numofsegs = seg(2); 
profile = seg(3:end); % remove ffff and segment number 
  
for i = numofsegs-1:-1:1 
    [buffer,seg]=LidarParse(buffer,PRNT); 
    seg = hex2decword(seg); 
    seg(1)=[];  % remove segment number 
    profile=[profile, seg]; 
end 
 
 
 
%% LidarSpin.m 
%  This function starts the SICK LIDAR spinning 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
disp('Spin') 
data=double('00100004000004030000'); % CRC = 'A3E3' 
writedata(s,data,PRNT); 
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pause(8) 
buffer=readdata(s); 
[buffer,msg]=LidarParse(buffer, PRNT); 
 
 
 
%% LidarTest.m 
%  This script tests the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
if exist('s'), closeport(s), end 
format compact, close all, clear all; clc 
s=0; PROERR=0; buffer=[]; PRNT=0; PLT=0; 
%% Lidar Initialize; 
s = openport('COM1',115200)   %opens port with correct settings 
LidarBaud; LidarSpin; LidarMeasure; 
%% Use Lidar 
a=clock; 
aviobj = avifile('lidarex.avi') 
for cnt = 1:111 
    profile = LidarGetprofile(s,PRNT); 
    if isempty(profile) 
        PROERR=PROERR+1; 
    else 
        GPS = [.5 .5 pi/180*209]; 
        clf 
        bra = poseProfile(profile,GPS); 
        brasize = length(bra); 
        fprintf('1: %0.2f, %0.2f ; 2: %0.2f, %0.2f\n', ... 
            bra(1), bra(2), bra(4), bra(5)) 
        for i = 1:3:brasize-1 
            if bra(i:i+1)>0 
                x=GPS(1)+bra(i+1)*cos(bra(i)+GPS(3)); 
                y=GPS(2)+bra(i+1)*sin(bra(i)+GPS(3)); 
                % DEBUG - Plot the robots on the floor 
                plot(y,x,'rs'), hold on 
            end 
        end 
        %pause(.35) 
        frame = getframe(gca); 
        aviobj = addframe(aviobj,frame); 
    end 
end 
aviobj = close(aviobj); 
  
b=clock; 
fprintf('%2.2f secs\n', b(4)*60+b(5)*60+b(6)-a(4)*60-a(5)*60-a(6)) 
%% Quit 
LidarMeasureStop; 
LidarIdle; 
closeport(s) 
clear s 
PROERR 
 
 
 
%% openport.m 
%  This function creates and opens a serial port object 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function s = openport(port,baudrate) 
s = serial(port, 'BaudRate', baudrate); 
fopen(s); 



114 

%% plotProfile.m 
%  This function plots a single profile from the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function [xy] = plotProfile(profile, PRNT) 
if length(profile)<5, return, end 
if PRNT 
    fprintf('LD response %04x \n', profile(1)); 
    fprintf('PROFILEFORMAT %04x \n', profile(2)); 
    fprintf('PROFILEINFO %04x \n', profile(3)); 
    fprintf('SEC1: Angle step %0.3f deg \n', profile(4)/16) 
    fprintf('SEC1: Number of points of sector %i \n', profile(5)) 
    fprintf('SEC1: Start direction of %0.3f deg \n', profile(6)/16) 
    fprintf('SEC2: Angle step %0.3f deg \n', profile(7)/16) 
    fprintf('SEC2: Number of points of sector %i \n', profile(8)) 
    fprintf('SEC2: Start direction of %0.3f deg \n', profile(9)/16) 
end 
  
deltheta = profile(7)/16*pi/180; 
numpoints = profile(8); 
startdir = profile(9)/16*pi/180; 
point = profile(10:end)/256; 
numpoints = length(point); 
  
for i = 1:numpoints 
    theta = startdir + (i-1) * deltheta; 
    y(i) = point(i)*sin(theta); 
    x(i) = point(i)*cos(theta); 
end 
  
xy = [x' y']; 
  
% clf 
% plot(0,0,'rs'), hold on 
clf 
plot(xy(:,2),xy(:,1), 'y.') 
hold on 
axis equal 
pause(.05) 
  
 
 
 
%% poseProfile.m 
% This function takes the postion of the lidar (robot) in absolute 
% coordinates, and the profile returned from the lidar, and returns  
% the pose - a vector (1x7) of bearings, ranges, and angles + time  
% of the relative postion of the other 2 robots. 
% 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function bra = poseProfile(profile, pos) 
% Allocate output variable (max = 10 robots) 
bra = zeros(1,10*3+1); 
  
% Check for good Profile 
if length(profile)<5, return, end 
  
% Poition of the lidar (abs) and the floor 
xr=pos(1); yr=pos(2); tr=pos(3); 
crns = [0,0; 0,14; 16,14; 16,0; 0,0] *.3048; 
  
% Rotation matrix to operate on the profile 
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rot = [cos(tr) sin(tr); -sin(tr) cos(tr)]; 
  
% Lidar profile data 
deltheta = profile(7)/16*pi/180; 
numpoints = profile(8); 
startdir = profile(9)/16*pi/180; 
point = profile(10:end)/256; 
numpoints = length(point); 
  
% Process lidar data - group points to make objects and  
% xfer relative frame into the abs frame 
i=1; obj=1; 
b=zeros(1,numpoints); r=zeros(1,numpoints); o=zeros(1,numpoints); 
for j = 1:numpoints 
    theta = startdir + (i-1) * deltheta; 
    b(i)= theta; 
    r(i)= point(i); 
    if i > 1 
        % if contiguous points are far apart, associate with new object 
        if abs(r(i) - r(i-1)) > .2 
            obj = obj + 1; 
        end 
    end 
    o(i) = obj; 
    X = [point(i)*cos(theta), point(i)*sin(theta)] * rot; 
    x(i) = X(1) + xr; 
    y(i) = X(2) + yr; 
    i=i+1; 
end 
  
xy = [x' y']; 
bro = [b' r' o']; 
  
% Connect points if broken at 0/360 degress  
if abs(bro(1,3)-bro(end,3)) < .2 
    n = find(bro(:,3)==max(bro(:,3))); 
    bro(n,1) = bro(n,1)-2*pi; 
    bro(n,3) = 1; 
end 
  
% Filter out tiny objects 
er=[]; j =1; 
for i = 1:max(bro(:,3)) 
    n=find(bro(:,3)==i); 
    rp = xy(min(n),:); 
    lp = xy(max(n),:); 
    leng=sqrt((rp(1)-lp(1))^2+(rp(2)-lp(2))^2); 
    if leng < .2 
        er=[er; n]; 
    else 
        bro(n,3) = j; 
        j=j+1; 
    end 
end 
xy(er,:)=[]; 
bro(er,:)=[]; 
  
% Filter out objects not on the floor and find a bearing, range and 
% attitiude for each object 
j=1; 
for i = 1 : max(bro(:,3)) 
    n=find(bro(:,3)==i); 
    bear = abs(bro(max(n),1)+bro(min(n),1))/2; 
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    dist = min(bro(n,2))+.3/2; 
     
    % DEBUG - plot the objects w/ numbers 
    % fprintf('%2i %5.2f %5.2f\n', i, bear, dist) 
    text(xy(min(n),2), xy(min(n),1)-.3, sprintf('%i',i)), hold on 
    if mod(bro(max(n),3),2) clr = 'g'; else clr = 'b'; end 
    plot(xy(n,2),xy(n,1), [clr '.']), hold on 
     
    % Filter objects if any point is off the floor 
    if any([any([xy(n,2)<0]),any([xy(n,1)<0]), ... 
            any([xy(n,1)>crns(3,1)]),any([xy(n,2)>crns(3,2)])]) 
        % OFF_FLOOR=xy(n,:) 
    else 
        bra(j:j+2) = [bear, dist, 0]; 
        j=j+3; 
    end 
end 
  
% DEBUG - Plot the floor and lidar position/orientation 
plot(yr,xr,'rs'), hold on 
plot([yr yr+.5*sin(tr)],[xr xr+.5*cos(tr)],'r') 
plot(crns(:,2), crns(:,1), 'k') 
axis equal 
  
% Format the output variable 
bra(7)=-1; 
bra=bra(1:7); 
 
 
 
%% readdata.m 
%  This function reads data from the serial port for the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function out = readdata(port) 
tic; flag = 1; buffer = []; 
  
while flag 
    if port~=0, 
        while port.BytesAvailable > 0 
            in = fread(port,port.BytesAvailable); 
            buffer = [buffer, in']; 
        end 
    end 
    if toc > 1, flag = 0; disp('Lidar timed out during read'), end 
    if ~isempty(buffer) 
        if buffer(end)==3, flag = 0; end 
    end 
end 
  
out=double(buffer); 
 
 
 
 
%% writedata.m 
%  This function writes data to the serial port for the SICK LIDAR 
%  Written by LCDR Blake Eikeberry, NPS, 2005-2006 
  
function err = writedata(port,data, PRNT) 
% data is a 1xN array of double 
  
if mod(length(data),4) 
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    err = 1; 
else 
    err = 0; 
    CRC=LidarCRC(data); 
    if PRNT 
        fprintf('SEND:'),  
        fprintf('%c', data),  
        fprintf(' %c%c%c%c\n', CRC) 
    end 
    if port ~= 0, 
        try 
            fwrite(port,[2 data CRC 3]) 
        catch 
            disp('Lidar timeout during write') 
        end 
    end 
end 
 
 
   
 
 
%% CW.m 
%% CW/Hill's Equation Real-time Interactive Simulator 
% 
% MA4362 Advanced Astrodynamics / Prof. Donald Danielson 
% Code written by LCDR Blake Eikenberry, Spring 2006 
%  for Relative Motion and Proximity Operations Project with 
%  LCDR Jason Hall, LT Bill Price, and LT Ryan Lewis 
% 
% References: 
% Vallado, David A., Fundamentals of Astrodynamics and Applications, Microcosm 
Press, 2001 
% Alfriend, Terry, Notes on Relative Motion of Neighboring Satellites, NPS, 
2006 
% Newman, Jim, Lectures on RPOP and the Space Shuttle/ISS rendezvous, NPS, 2006 
% >> Help screen available by pressing '?' << 
  
clc; close all; format compact; clear all; 
global code, code = 100; 
a=7e3; Mu=398600.4415; 
n=sqrt(Mu/a^3); 
  
fuel=0; tic; t0=clock; trail=0; az=45; el=15; inc=0; 
pdtr = 1; cntr = 1; pdtrl= round(2*pi/n); zoom = 50; dV=.1; scrnmode=1; 
figure('KeyPressFcn', @userevent); 
disp('Press ? for help') 
% aviobj = avifile('CWmovie.avi') 
  
% Set initial conditions 
ic = 1; 
switch ic 
    case 1 % Specified 
        x0=100;y0=120;z0=140; 
        u0=0; v0=0; w0=0; 
    case 2 % Circle on relative orbit plane 
        C=6; D2=3*C^2; 
        x0=0; y0=2*C; z0=0; 
        u0=n*C; v0=0; w0=n*sqrt(D2-z0^2); 
    case 3 % Circle on projected y-z plane 
        C=6; D2=4*C^2; 
        x0=0; y0=2*C; z0=0; 
        u0=n*C; v0=0; w0=n*sqrt(D2-z0^2); 
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    case 4 % Lagging y 
        C=6; D2=3*C^2; 
        xc=1; yc0=1; zc=1; vc=3*n*xc/-2; 
        x0=xc; y0=2*C+yc0; z0=zc; 
        u0=n/2*(y0-yc0); 
        v0=(vc+6*n*x0)/-3; 
        w0=n*sqrt(D2-z0^2); 
    otherwise % Random 
        x0=10*randn(1); y0=10*randn(1); z0=10*randn(1); 
        u0=randn(1); v0=randn(1); w0=randn(1); 
end 
  
while code 
    tt0=toc; inc=inc+1; 
    t = linspace(tt0, tt0+pdtrl, 1000); 
    psy = n*t; 
    x = -(2*v0/n+3*x0)*cos(psy) + (u0/n)*sin(psy)+(4*x0+2*v0/n); 
    y = (y0-2*u0/n)+(4*v0/n+6*x0)*sin(psy)+2*u0/n*cos(psy)-(6*x0+3*v0/n)*psy; 
    z = z0*cos(psy)+(w0/n)*sin(psy); 
    u = (2*v0+3*x0*n)*sin(psy) + (u0)*cos(psy); 
    v = (4*v0+6*x0*n)*cos(psy) - 2*u0*sin(psy)-(6*x0*n+3*v0); 
    w = -z0*sin(psy)*n+w0*cos(psy); 
    d = norm([x(1); y(1); z(1)]);       % cartesian distance 
    tti=findmindV([x(1),y(1),z(1),n]);  % velocity optimal time-to-intercept 
    vo=((6*x(1)*(n*tti-sin(n*tti))-y(1))*n*sin(n*tti)-2*n*x(1)*(4-
3*cos(n*tti))*(1-cos(n*tti)))/... 
        ((4*sin(n*tti)-3*n*tti)*sin(n*tti)+4*(1-cos(n*tti))^2); 
    uo=-(n*x(1)*(4-3*cos(n*tti))+2*(1-cos(n*tti))*vo)/sin(n*tti); 
    wo=-z(1)*n*cot(n*tti); 
    ve=-2*x(1)*n; 
    du=0; dv=0; dw=0; 
  
    % Trail for View 5 
    Psy=n*etime(clock,t0); 
    R=[cos(Psy),-sin(Psy),0;sin(Psy),cos(Psy),0;0,0,1]; 
    trail=trail+1; 
    P(:,trail)=R*[x(1);y(1);z(1)]; 
    Pt(:,trail)=R*[x(1);y(1);z(1)]+a*R(:,1); 
  
    % Act on user interaction 
    switch code 
        case 1, du=-dV; dv=-dV; 
        case 2, du=-dV; 
        case 3, du=-dV; dv=dV; 
        case 4, dv=-dV; 
        case 5, du=dV*u(1);dv=dV*v(1);dw=dV*w(1); 
        case 6, dv=dV; 
        case 7, du=dV;  dv=-dV; 
        case 8, du=dV; 
        case 9, du=dV;  dv=dV; 
        case 10, du=-u(1); dv=-v(1); dw=-w(1); 
        case 11, du=uo-u(1); dv=vo-v(1); dw=wo-w(1); 
        case 12, dw=dV; 
        case 13, dw=-dV; 
        case 14, dv=ve-v(1); pdtrl= round(2*pi/n); 
        case 100, zoom=1+.12*d; 
        case 101, zoom=zoom/1.5; 
        case 102, zoom=zoom*1.5; 
        case 103, pdtr=pdtr*-1; 
        case 104, cntr=cntr*-1; 
        case 105, pdtrl=round(pdtrl*1.3); 
        case 106, pdtrl=max(round(pdtrl/1.3),10); 
        case 107, dV=dV+.01; 
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        case 108, dV=max(dV-.01,.01); 
        case 200, scrnmode=0; 
        case 201, scrnmode=1; 
        case 202, scrnmode=2; 
        case 203, scrnmode=3; 
        case 209, scrnmode=4; 
        case 210, scrnmode=5; 
        case 204, az=az+5; 
        case 205, az=az-5; 
        case 206, el=el+5; 
        case 207, el=el-5; 
        case 208, pause(5) 
    end 
    if code >0 && code < 100 
        x0=x(1); y0=y(1); z0=z(1); 
        v0=v(1)+dv; u0=u(1)+du; w0=w(1)+dw; 
        tic; fuel=norm([du;dv;dw])+fuel; 
        fprintf('dV = [%6.2f, %6.2f, %6.2f] {%5.2f} m/s\n', du, dv, dw, fuel) 
    end 
    if code, code =-1; end 
    plotorb 
end 
close all 
% aviobj = close(aviobj); 
 
 
 
%% userevent.m 
%% Change the action 'code' based on keys pressed by the user 
%  Code written by LCDR Blake Eikenberry, Spring 2006 
 
function [code]=userevent(src,evnt) 
global code 
switch evnt.Character 
    case 'q', code = 0; 
    case '1', code = 1; 
    case '2', code = 2; 
    case '3', code = 3; 
    case '4', code = 4; 
    case '5', code = 5; 
    case '6', code = 6; 
    case '7', code = 7; 
    case '8', code = 8; 
    case '9', code = 9; 
    case '0', code = 10; 
    case '.', code = 11; 
    case '+', code = 12; 
    case '-', code = 13; 
    case '*', code = 14; 
    case ',', code = 100; 
    case '>', code = 101; 
    case '<', code = 102; 
    case 'p', code = 103; 
    case 'c', code = 104; 
    case ']', code = 105; 
    case '[', code = 106; 
    case '}', code = 107; 
    case '{', code = 108; 
    case '?', code = 200; 
    case '!', code = 201; 
    case '@', code = 202; 
    case '#', code = 203; 
    case 'g', code = 204; 
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    case 'h', code = 205; 
    case 'b', code = 206; 
    case 'y', code = 207; 
    case ')', code = 98; 
    case '(', code = 99; 
    case '/', code = 208; 
    case '$', code = 209; 
    case '%', code = 210; 
end 
 
 
 
%% findminV.m 
%  this function finds the velocity optimal time-to-intercept 
%  Written by LCDR Blake Eikenberry, 2005-2006 
  
function mint=findmindV(IN) 
mint=fminsearch(@(x) dV(IN,x), 1); 
  
function V=dV(IN,tti) 
n=IN(4); 
x=IN(1); y=IN(2); z=IN(3); 
vo=((6*x(1)*(n*tti-sin(n*tti))-y(1))*n*sin(n*tti)-2*n*x(1)*(4-3*cos(n*tti))*(1-
cos(n*tti)))/... 
    ((4*sin(n*tti)-3*n*tti)*sin(n*tti)+4*(1-cos(n*tti))^2); 
uo=-(n*x(1)*(4-3*cos(n*tti))+2*(1-cos(n*tti))*vo)/sin(n*tti); 
wo=-z(1)*n*cot(n*tti); 
V=sqrt(vo^2+uo^2+wo^2); 

 

%% plotorb.m 
%% Plot the orbit based on the current screen mode 
%  Code written by LCDR Blake Eikenberry, Spring 2006 
 
hold off 
scrnsize=[-16 16 -10 10]*zoom; 
  
switch scrnmode 
    case 1 % XY Plane 
        plot(y(1),x(1),'cs'), hold on; 
        if pdtr>0 
            plot (y,x, 'y:') 
            text(y(end), x(end), sprintf('%0.1f min', pdtrl/60), 'Color', 
'y','FontSize', 8) 
            text(scrnsize(1)*.99, scrnsize(3)*.9, ['v_e' sprintf('=%6.2f 
m/s',ve)], 'Color', 'y','FontName', 'Courier') 
            text(scrnsize(2)*.5, scrnsize(3)*.8, ['u_i' sprintf('=%6.2f 
m/s',uo)], 'Color', 'y','FontName', 'Courier') 
            text(scrnsize(2)*.5, scrnsize(3)*.9, ['v_i' sprintf('=%6.2f 
m/s',vo)], 'Color', 'y','FontName', 'Courier') 
            text(scrnsize(2)*.5, scrnsize(3)*.7, ['t_i' sprintf('=%6.1f 
min',tti/60)], 'Color', 'y','FontName', 'Courier') 
        end 
        if cntr>0, plot([0 0],[0 zoom], 'g'), plot([0 zoom],[0 0],'g', 
'LineWidth', 2),plot([0 0],[0 -zoom],'g:'), end 
        text(scrnsize(2)*.5, scrnsize(4)*.9, sprintf('x =%6.2f m',x(1)), 
'Color', 'g','FontName', 'Courier') 
        text(scrnsize(2)*.5, scrnsize(4)*.8, sprintf('y =%6.2f m',y(1)), 
'Color', 'g','FontName', 'Courier') 
        text(scrnsize(2)*.5, scrnsize(4)*.7, sprintf('u =%6.2f m/s',u(1)), 
'Color', 'g','FontName', 'Courier') 
        text(scrnsize(2)*.5, scrnsize(4)*.6, sprintf('v =%6.2f m/s',v(1)), 
'Color', 'g','FontName', 'Courier') 



121 

        xlabel('y-axis (m)'), ylabel('IN PLANE x-axis (m)') 
    case 2 % ZY Plane 
        plot(y(1),z(1),'cs'), hold on; 
        if pdtr>0 
            plot(y,z,'y:') 
            text(y(end), z(end), sprintf('%0.1f min',pdtrl/60), 'Color', 
'y','FontName', 'Courier') 
            text(scrnsize(1)*.99, scrnsize(3)*.9, ['v_e' sprintf('=%6.2f 
m/s',ve)], 'Color', 'y','FontName', 'Courier') 
            text(scrnsize(2)*.5, scrnsize(3)*.8, ['w_i' sprintf('=%6.2f 
m/s',wo)], 'Color', 'y','FontName', 'Courier') 
            text(scrnsize(2)*.5, scrnsize(3)*.9, ['v_i' sprintf('=%6.2f 
m/s',vo)], 'Color', 'y','FontName', 'Courier') 
            text(scrnsize(2)*.5, scrnsize(3)*.7, ['t_i' sprintf('=%6.1f 
min',tti/60)], 'Color', 'y','FontName', 'Courier') 
        end 
        if cntr>0, plot([0 0],[0 0],'*'), plot([0 0],[0 zoom], 'g'), plot([0 
zoom],[0 0],'g', 'LineWidth', 2), end 
        text(scrnsize(2)*.5, scrnsize(4)*.9, sprintf('z =%6.2f m',z(1)), 
'Color', 'g','FontName', 'Courier') 
        text(scrnsize(2)*.5, scrnsize(4)*.8, sprintf('y =%6.2f m',y(1)), 
'Color', 'g','FontName', 'Courier') 
        text(scrnsize(2)*.5, scrnsize(4)*.7, sprintf('w =%6.2f m/s',w(1)), 
'Color', 'g','FontName', 'Courier') 
        text(scrnsize(2)*.5, scrnsize(4)*.6, sprintf('v =%6.2f m/s',v(1)), 
'Color', 'g','FontName', 'Courier') 
        xlabel('y-axis (m)'), ylabel('OUT OF PLANE z-axis (m)') 
    case 3 % XYZ Stationary 
        plot3(y(1),x(1),z(1), 'cs'), hold on; 
        if pdtr>0 
            plot3(y,x,z, 'y:') 
            text(y(end), x(end), z(end), sprintf('%0.1f min',pdtrl/60), 
'Color', 'y','FontName', 'Courier') 
        end 
        if cntr>0 
            plot3([0 0],[0 0],[0 -zoom*2], 'g')  
            plot3([0 0],[0 zoom*2],[0 0], 'g') 
            plot3([0 zoom*2],[0 0],[0 0], 'g', 'LineWidth', 2) 
            plot3([0 0],[0 -zoom*2],[0 0], 'g:') 
        end 
        xlabel('y-axis (m)'), ylabel('x-axis (m)'), zlabel('z-axis (m)') 
        scrnsize=[-1 1 -1 1 -1 1]*zoom*10; 
        view(az,el) 
        grid on 
        set(gca,'XColor','b','YColor','b','ZColor', 'b') 
    case 4 % XYZ Rotating 
        Pdtr=R*[x;y;z]; 
        Px=Pdtr(1,:); Py=Pdtr(2,:); Pz=Pdtr(3,:); 
        plot3(P(2,end),P(1,end),P(3,end), 'cs'), hold on; 
        if pdtr>0 
            plot3(Py,Px,Pz, 'y:') 
            text(Py(end), Px(end), Pz(end), sprintf('%0.1f min',pdtrl/60), 
'Color', 'y','FontName', 'Courier') 
        end 
        CTR=R*[0, 0, 0, 0, 0, 1, 0,-1; 
            0, 0, 0, 1, 0, 0, 0, 0; 
            0, -1, 0, 0, 0, 0, 0, 0]*zoom*2; 
        if cntr>0 
            plot3(CTR(2,1:2),CTR(1,1:2),CTR(3,1:2), 'g') 
            plot3(CTR(2,3:4),CTR(1,3:4),CTR(3,3:4), 'g', 'LineWidth', 2) 
            plot3(CTR(2,5:6),CTR(1,5:6),CTR(3,5:6), 'g') 
            plot3(CTR(2,7:8),CTR(1,7:8),CTR(3,7:8), 'g:') 
        end 
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        xlabel('Y_{ECI}-axis (m)'), ylabel('X_{ECI}-axis (m)'), 
zlabel('Z_{ECI}-axis (m)') 
        scrnsize=[-1 1 -1 1 -1 1]*zoom*10; 
        view(az,el) 
        grid on 
        set(gca,'XColor','b','YColor','b','ZColor', 'b') 
    case 5 % XYZ Rotating and Translated 
        if zoom < .08*norm(Pt(:,end)), zoom = .1*norm(Pt(:,end)); end 
        Pdtr=R*[x;y;z]+a*R(:,1)*ones(1,length(x)); 
        Px=Pdtr(1,:); Py=Pdtr(2,:); Pz=Pdtr(3,:); 
        plot3(Pt(2,end),Pt(1,end),Pt(3,end), 'cs'), hold on; 
        plot3(Pt(2,:),Pt(1,:),Pt(3,:), ':c') 
        if pdtr>0 
            plot3(Py,Px,Pz, 'y:') 
            text(Py(end), Px(end), Pz(end), sprintf('%0.1f min',pdtrl/60), 
'Color', 'y','FontName', 'Courier') 
        end 
        CTR=R*[0, 0, 0, 0, 0, 1, 0,-1; 
            0, 0, 0, 1, 0, 0, 0, 0; 
            0, -1, 0, 0, 0, 0, 0, 0]*zoom*2+a*R(:,1)*ones(1,8); 
        if cntr>0 
            plot3(CTR(2,1:2),CTR(1,1:2),CTR(3,1:2), 'g') 
            plot3(CTR(2,3:4),CTR(1,3:4),CTR(3,3:4), 'g', 'LineWidth', 2) 
            plot3(CTR(2,5:6),CTR(1,5:6),CTR(3,5:6), 'g') 
            plot3(CTR(2,7:8),CTR(1,7:8),CTR(3,7:8), 'g:') 
        end 
        plot3(0,0,0,'*') 
        xlabel('Y_{ECI}-axis (m)'), ylabel('X_{ECI}-axis (m)'), 
zlabel('Z_{ECI}-axis (m)') 
        scrnsize=[-1 1 -1 1 -1 1]*zoom*10; 
        view(az,el) 
        grid on 
        set(gca,'XColor','b','YColor','b','ZColor', 'b') 
    case 0 % Help Screen 
        plot(0,0, 'cs'), hold on; 
        text(1, -1,  'number pad: 1-9') 
        text(2, -1,  'activate in-plane thrust') 
        text(1, -2,  '+/-') 
        text(2, -2,  '+/- out-of-plane thrust') 
        text(1, -3,  '0') 
        text(2, -3,  'stop relative motion') 
        text(1, -4,  'shift-[ / ]') 
        text(2, -4,  '+/- \DeltaV amount') 
        text(1, -5,  'shift-1/2/3/4/5') 
        text(2, -5,  'display mode') 
        text(1, -6,  'p') 
        text(2, -6,  'on/off predictor') 
        text(1, -7,  '[ / ]') 
        text(2, -7,  '+/- predictor length') 
        text(1, -8,  'c') 
        text(2, -8,  'on/off center mark') 
        text(1, -9,  '*') 
        text(2, -9,  'orbit in ellipse') 
        text(1, -10, '.') 
        text(2, -10, 'intercept') 
        text(1, -11, '</>') 
        text(2, -11, '+/- zoom') 
        text(1, -12, ',') 
        text(2, -12, 'auto-zoom') 
        text(1, -13, '?') 
        text(2, -13, 'help screen') 
        text(1, -14, 'q') 
        text(2, -14, 'quit') 
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        text(1, -18, '\DeltaV used thus far') 
        text(2, -18, sprintf('%0.2f m/s',fuel), 'FontWeight', 'demi') 
        axis([.9 3.1 -20 0]) 
        set(gca,'XTickLabel',[],'YTickLabel',[],'ZTickLabel',[]) 
        set(gca,'XTick',[],'YTick',[],'ZTick',[]) 
        xlabel('Help Screen') 
end 
title('CW Real Time Interactive Simulator') 
if scrnmode < 3 
    clck = clock; hr = clck(4); min = clck(5); sec = clck(6); 
    text(scrnsize(1)*.99, scrnsize(4)*.9, sprintf('Time: 
%2i:%02i:%02i',hr,min,round(sec)), 'Color', 'g','FontName', 'Courier') 
    text(scrnsize(1)*.99, scrnsize(4)*.8, ['|\DeltaV| = ' sprintf('%0.2f m/s', 
dV)], 'Color', 'g','FontName', 'Courier') 
    text(scrnsize(1)*.99, scrnsize(4)*.7, ['a=' sprintf('%ikm, ', a) 'e=0'], 
'Color', 'g','FontName', 'Courier') 
end 
if scrnmode, axis equal, axis(scrnsize), set(gca, 'Color', 'k'), end 
frame = getframe(gca); 
% aviobj = addframe(aviobj,frame); 
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